An, Sanghyeon, Minjun Lee, Sanglee Park, Heerin Yang, and Jungmin So. 2020.
“An Ensemble of Simple Convolutional Neural Network Models for MNIST Digit Recognition.” arXiv.
https://doi.org/10.48550/arXiv.2008.10400.
Bishop, Christopher M., and Hugh Bishop. 2024.
Deep Learning: Foundations and Concepts. Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-031-45468-4.
Hastie, Trevor, Robert Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer Series in Statistics. New York, NY: Springer.
James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan E. Taylor. 2023. An Introduction to Statistical Learning: With Applications in Python. Springer Texts in Statistics. Cham: Springer.
Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. 2018.
Foundations of Machine Learning. The MIT Press.
https://doi.org/10.5555/3360093.
Shalev-Shwartz, Shai, and Shai Ben-David. 2014. Understanding Machine Learning. 1st ed. West Nyack: Cambridge University Press.
Simard, Patrice, Yann Le Cun, and John Denker. 1992. “Efficient Pattern Recognition Using a New Transformation Distance.” In Proceedings of the 6th International Conference on Neural Information Processing Systems, 50–58. NIPS’92. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.