
Estimating the Moments and the Distribution of
Heterogeneous Marginal Effects Using Panel Data

Vladislav Morozov∗

This version: April 25, 2024
Click here to see the latest version

Abstract

This paper considers estimation of the moments and the distribution of heterogeneous
marginal effects using panel data. We impose no restrictions on the form or dimension
of time-invariant heterogeneity. In this setting, we identify the mean, variance, higher-
order moments, and the distribution of marginal effects using two periods of data. In
particular, the moments are expressed as explicit functions of the data. We propose
simple nonparametric estimators for the moments and the distribution, and study their
asymptotic properties. The moment estimators are consistent and asymptotically normal.
For the distribution estimator, we establish consistency by developing novel results
that connect the convergence of distributions to the convergence of their moments. We
illustrate the methodology with an application to Engel curves for food at home. Our
analysis of variance, higher moments, and the distribution of marginal effects reveals
significant heterogeneity. In particular, some households have upward-sloping sections
in their Engel curves for lower values of expenditures. In contrast, the average Engel
curve is downward-sloping for all expenditure values, in line with the previous literature.
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1 Introduction

Marginal effects are a key object of interest in economics. For example, labor supply elasticity
with respect to the marginal tax rate plays a large role in the design of tax-and-benefit
systems and the determination of the optimal size of the public sector (Blundell, MaCurdy,
and Meghir, 2007a; Saez, Slemrod, and Giertz, 2012).

Unobserved heterogeneity poses a challenge to nonparametric analysis of marginal effects.
Under heterogeneity, interest centers on the moments and the distribution of marginal
effects (Heckman, Smith, and Clements, 1997). However, nonparametric estimation of the
distribution of marginal effects is typically either limited to average effects (Hoderlein and
Mammen, 2007, 2009; Hoderlein and White, 2012; Chernozhukov, Fernández-Val, Hoderlein,
Holzmann, and Newey, 2015) or restricts unobserved heterogeneity to be scalar and to enter
the model monotonically (Matzkin, 2003; Imbens and Newey, 2009; Evdokimov, 2010).

In this paper we identify and estimate the moments and the distribution of marginal
effects in a class of nonparametric panel data models. Specifically, we consider a setting with
time-invariant heterogeneity of unrestricted form and additive time-varying heterogeneity.
We identify the moments and the distribution using two periods of data for the subpopulation
of stayers – units with the same value of the covariate in both periods. In contrast to the
previous literature, we identify the variance, higher-order moments, and the distribution of
marginal effects without restricting the dimension of time-invariant heterogeneity or how it
affects the outcome. We propose simple estimators for the moments and the distribution of the
marginal effects. Our estimators are easy to compute. In particular, our moment estimators
are available in closed form and require no optimization. The distribution estimators require
solving a small quadratic program. For both the moment and the distribution estimators we
establish their asymptotic properties.

We consider the following model. The continuous outcome 𝑌𝑖𝑡 is generated as

𝑌𝑖𝑡 = 𝑚(𝑋𝑖𝑡,𝑊𝑖𝑡, 𝛼𝑖) + 𝑢𝑖𝑡, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇 (1)

where 𝑚 is an unknown structural function. (𝑋𝑖𝑡,𝑊𝑖𝑡) are observed explanatory variables,
𝑋𝑖𝑡 is scalar and 𝑊𝑖𝑡 may be a vector. 𝛼𝑖 is time-invariant unobserved heterogeneity, and
𝑢𝑖𝑡 is an unobserved time-varying idiosyncratic shock. We do not restrict the form or the
dimension of time-invariant heterogeneity 𝛼𝑖. In particular, 𝛼𝑖 may be a vector, a function,
or a more complex object. The idiosyncratic disturbance 𝑢𝑖𝑡 satisfies E [𝑢𝑖𝑡|𝑋𝑖𝑡,𝑊𝑖𝑡] = 0. We
work in a fixed effect framework and do not restrict the dependence structure between 𝛼𝑖

and {(𝑋𝑖𝑡,𝑊𝑖𝑡)}𝑇𝑡=1. The model may be interpreted as a generalized regression of the form
E [𝑌𝑖𝑡|𝑋𝑖𝑡,𝑊𝑖𝑡, 𝛼𝑖] = 𝑚(𝑋𝑖𝑡,𝑊𝑖𝑡, 𝛼𝑖).

2



The goal of this paper is to identify and estimate the moments and the distribution of
𝜕𝑥𝑚(𝑥,𝑤, 𝛼𝑖) for a given value of (𝑥,𝑤). These moments and the distribution fully summarize
the impact of a marginal change in the covariate 𝑋𝑖𝑡, accounting for the heterogeneity in the
marginal effects induced by 𝛼𝑖.

Identification and estimation of the mean, variance, and higher-order moments of the
marginal effect 𝜕𝑥𝑚(𝑥,𝑤, 𝛼𝑖) exploits the panel structure of the data. First, we approximate
𝜕𝑥𝑚(𝑥,𝑤, 𝛼𝑖) by a finite difference of the form (𝑚(𝑥+ ℎ,𝑤, 𝛼𝑖)−𝑚(𝑥− ℎ,𝑤, 𝛼𝑖))/2ℎ, ℎ > 0.
Second, we show that the 𝑘th moment of this finite difference is identified in model (1) for
the population of near-stayers – units with 𝑋𝑖1 = 𝑥− ℎ and 𝑋𝑖2 = 𝑥+ ℎ. By taking ℎ→ 0,
we identify the 𝑘th moment of marginal effects for stayers as the limit of the 𝑘th moment
of the finite difference. Further, the moments of interest are identified explicitly in terms
of conditional moments of (𝑌𝑖1, 𝑌𝑖2) and their derivatives if every component of the model
is smooth in 𝑥 in a suitable sense. We obtain simple optimization-free estimators for all
moments of 𝜕𝑥𝑚(𝑥,𝑤, 𝛼𝑖) by replacing population moments and derivatives with suitable
local polynomial estimators.

Identification and estimation of the distribution of 𝜕𝑥𝑚(𝑥,𝑤, 𝛼) builds on our results
for the moments. The distribution is identified under the assumption that it is determined
by its moments. We estimate the distribution of interest with a penalized sieve estimator.
Specifically, the distribution is approximated with a flexible mixture. The weights of the
mixture are obtained by approximately matching a finite number of estimated moments. The
estimator is easy to compute and only requires solving a quadratic optimization problem.

We characterize the asymptotic properties of our moment and distribution estimators.
First, we show that the moment estimators are consistent for the moments of 𝜕𝑥𝑚(𝑥,𝑤, 𝛼𝑖),
and we obtain convergence rates. The convergence rates depend on the order of the moment.
Specifically, the convergence rate for the 𝑘th moment matches the convergence rate of a local
polynomial estimator for a 𝑘th derivative of a regression function. Second, we show that
the moment estimators are asymptotically normally distributed, which allows inference on
the moments of the marginal effects. Third, we establish consistency of our distribution
estimator. To do so, we develop novel theoretical results that connect the convergence of
moments to the weak convergence of corresponding distributions. In particular, the objective
function used is a sample version of a suitable metric that measures the distance between
distributions in terms of their moments. We further obtain convergence rates if the true
distribution is a finite mixture with nonparametrically modeled mixing probabilities.

As an application of our methodology, we estimate the moments and the distribution of
the slopes of household-level Engel curves for food at home. Overall, our results for variance,
higher-order moments and the distribution reveal significant heterogeneity in Engel curve
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slopes. Further, for a fraction of households, their individual Engel curves have upward-
sloping sections for lower values of expenditures, before becoming downwards-sloping at
larger expenditures. Accordingly, Engel’s law does not necessarily hold at the household
level, although it holds on average. Last, the overall distribution of Engel curve slopes is
approximately symmetric, light-tailed, and becomes more concentrated around the mean as
expenditure rises.

Our paper is related to several strands of literature. First, we contribute to the literature
on nonparametric analysis of marginal effects (Matzkin, 2003; Altonji and Matzkin, 2005;
Hoderlein and Mammen, 2007, 2009; Imbens and Newey, 2009; Evdokimov, 2010; Hoderlein
and White, 2012; Graham and Powell, 2012; Chernozhukov, Fernández-Val, Hahn, and Newey,
2013; Chernozhukov et al., 2015; Cooprider, Hoderlein, and Meister, 2022). As noted above,
these papers generally fall into two principal groups: those focusing only on average effects
and those imposing monotonicity at some stage to estimate the full distribution of marginal
effects. The key exception is the paper by Cooprider et al. (2022), which studies a conditional
deconvolution approach towards nonparametrically identifying the distribution of marginal
effects and propose a parametric estimator for the characteristic function of marginal effects in
model (1). In contrast to the those papers, we provide explicit nonparametric estimators for all
moments and the distribution with heterogeneity of unrestricted dimension. Accordingly, our
approach is compatible with economic models which allow for multidimensional unobserved
heterogeneity, whether in preferences, technology, innate abilities, or in other settings. It
allows for direct nonparametric estimation of such parameters as the variance, skewness, or
the quantiles of the marginal effects.

Second, models in the spirit of model (1) have previously been considered in Newey, Powell,
and Vella (1999); Newey and Powell (2003); Chen, Dahl, and Khan (2005); Evdokimov (2010);
Blundell, Horowitz, and Parey (2012), among others. We do not restrict the form or dimensions
of 𝛼𝑖 and focus on the moments and the distribution of the derivative of 𝑚.

Third, our empirical application contributes to the growing literature on nonparametric
analysis of Engel curves (Banks, Blundell, and Lewbel, 1997; Blundell, Browning, and
Crawford, 2003; Blundell, Chen, and Kristensen, 2007b; Imbens and Newey, 2009; Horowitz,
2011; Chen and Pouzo, 2012; Chernozhukov et al., 2015). Unlike the above papers, we focus
on the distributional features of the slopes of individual Engel curves and go beyond the
average slope, while allowing for unrestricted variation in preferences. Accordingly, we find
that some households have upward-sloping sections in their Engel curve for lower values
of expenditures, while confirming that the average Engel curve is downward-sloping for all
expenditure values.

We also contribute to the literature on identifying and estimating distributions from their
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moments (Beran and Hall, 1992; Ormoneit and White, 1999; Wu, 2003; Mnatsakanov, 2008;
Mnatsakanov and Hakobyan, 2009; Ponomareva, 2010; Wu and Yang, 2020). In contrast to
these papers, we face the problem of constructing a distribution estimator based on moment
estimators that converge at different nonparametric rates. We metrize weak convergence of
distributions in terms of differences of moments, and use a sample version of the resulting
metric in order to construct a suitable sieve estimator for the distribution.

The rest of the paper is organized as follows. In section 2, we state our key identification
results for the moments and the distribution of the marginal effects. In section 3 we propose
simple estimators for these quantities. Sections 4 and 5 are devoted to the asymptotic
properties of the moment and distribution estimators, respectively. Section 6 contains a
simulation study. Finally, section 7 contains the empirical application.

2 Identification

2.1 The Model

We begin by considering model (1) in more detail. Let the outcome 𝑌𝑖𝑡 be generated as

𝑌𝑖𝑡 = 𝑚(𝑋𝑖𝑡, 𝛼𝑖) + 𝑢𝑖𝑡, 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, 2 (2)

where 𝑋𝑖𝑡 is a continuous random variable, 𝛼𝑖 is a random element of a suitable topological
space A, and 𝑚(·, ·) is an unknown function. 𝑚 is twice differentiable in its first argument,
and derivatives of 𝑚 are bounded uniformly in both variables. For clarity of exposition,
we suppress 𝑊𝑖𝑡 and focus on the case of 𝑇 = 2. Units 𝑖 are independent. The structural
function 𝑚 is assumed to be invariant over time, ruling out unrestricted time trends. The
smoothness assumption on 𝑚 rules out discrete choice models.

An example of setup (2) is given by Engel curves for food at home – the example we
empirically consider in section 7. Engel curves relate the household budget to the share of
the budget spent on a given good. In this context 𝑋𝑖𝑡 is the log total expenditure. 𝛼𝑖 reflects
time-invariant preferences, captured by a household-specific utility function. The function
𝑚(𝑋𝑖𝑡, 𝛼𝑖) is the share of the total expenditure exp(𝑋𝑖𝑡) that a household with preferences
𝛼𝑖 would like to spend on food at home. The observed share 𝑌𝑖𝑡 is equal to optimal share
subject to idiosyncratic shocks to consumption 𝑢𝑖𝑡.

We are interested in the moments and the distribution of the marginal effect 𝜕𝑥𝑚(𝑥, 𝛼𝑖).
Together, these objects provide a complete summary of the impact of a marginal change
in the covariate 𝑋𝑖𝑡, accounting for the heterogeneity in the marginal effects induced by 𝛼𝑖.
Specifically, we consider these distributional features for the population of stayers at 𝑥 – the
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units with {𝑋𝑖1 = 𝑋𝑖2 = 𝑥}. Formally, let 𝑘 be a positive integer and label the 𝑘th moment
of marginal effects for stayers at 𝑥 as

𝜇𝑘(𝑥) = E
[︁(︀
𝜕𝑥𝑚(𝑥, 𝛼𝑖)

)︀𝑘|𝑋𝑖1 = 𝑋𝑖2 = 𝑥
]︁
.

The moments 𝜇𝑘(𝑥) serve a double purpose. First, they may be of interest directly. In
particular, 𝜇1(𝑥) is a local average response; this special case has been extensively studied in
the literature (Altonji and Matzkin, 2005; Hoderlein and White, 2012; Chernozhukov et al.,
2015). Moments with 𝑘 ≥ 2 may be used to compute summary statistics such as the variance
of marginal effects, skewness, etc. Second, the identification argument for the distribution
proceeds through moments 𝜇𝑘(𝑥). The distribution of 𝜕𝑥𝑚(𝑥, 𝛼𝑖) is determined by 𝜇𝑘(𝑥) for
𝑘 = 1, 2, . . . , as 𝜕𝑥𝑚(𝑥, 𝛼𝑖) is a bounded random variable under our assumptions. Such an
approach is required, as the structural function 𝑚 is not identified due to the unrestricted
nature of 𝛼𝑖.

We impose the following assumption on the time-varying disturbances 𝑢𝑖𝑡:

Assumption 2.1 (Properties of 𝑢). (𝑢𝑖1, 𝑢𝑖2) satisfies the following conditions:
(i) 𝑢𝑖𝑡 may depend on (𝑋𝑖1, 𝑋𝑖2), but only contemporaneously: 𝑢𝑖1|(𝑋𝑖1, 𝑋𝑖2)

𝑑
= 𝑢𝑖1|𝑋𝑖1 and

𝑢𝑖2|(𝑋𝑖1, 𝑋𝑖2)
𝑑
= 𝑢𝑖2|𝑋𝑖2.

(ii) Mean independence: E[𝑢𝑖𝑡|𝑋𝑖𝑡 = 𝑥] = 0 for all 𝑥
(iii) 𝑢𝑖1 and 𝑢𝑖2 are conditionally independent conditional on (𝑋𝑖1, 𝑋𝑖2)

(iv) Conditional independence of 𝑢𝑖𝑡 and 𝛼𝑖: 𝑢𝑖𝑡 ⊥ 𝛼𝑖|(𝑋𝑖1, 𝑋𝑖2).

Assumption 2.1 imposes a number of conditional independence assumptions on (𝑢𝑖1, 𝑢𝑖2).
It is similar to the assumptions of Evdokimov (2010), to whom we refer for a detailed
discussion. (i) allows the distribution of 𝑢𝑖𝑡 to change with 𝑡 and to depend on 𝑋𝑖𝑡 in a
potentially complex manner. However, (ii) imposes a location restriction on the distribution
of 𝑢𝑖𝑡. Under assumption (ii) the model for 𝑌𝑖𝑡 may be viewed as the general regression model
considered by Wooldridge (2010a) with E(𝑌𝑖𝑡|𝑋𝑖𝑡, 𝛼𝑖) = 𝑚(𝑋𝑖𝑡, 𝛼𝑖). Together, (i) and (iii)
rule out using lagged values of 𝑌𝑖𝑡 as covariates (Hoderlein and White, 2012). Finally, under
(iv) 𝑢𝑖𝑡 and 𝛼𝑖 may be dependent, but this dependence must flow only through (𝑋𝑖1, 𝑋𝑖2).

We adopt a fixed effects perspective and impose no assumptions on the form and dis-
tribution of 𝛼𝑖. Additionally, 𝛼𝑖 may exhibit complex dependence with (𝑋𝑖1, 𝑋𝑖2). In the
Engel curve example, preferences 𝛼𝑖 may take form of a utility function, sampled from some
unspecified probability law on a suitable space of functions. The expenditure level 𝑋𝑖𝑡 may
be dependent with the household preferences 𝛼𝑖.

We focus on the subpopulation of stayers — units with 𝑋𝑖1 = 𝑋𝑖2 = 𝑥 — for two principal
reasons. First, stayers and near-stayers comprise a large proportion of the data in many
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applications (e.g. Graham and Powell (2012)). For example, in our application to Engel
curves for food at home, most household exhibit little-to-no variation in their expenditure
levels between time periods (see fig. 6 in section 7). As such, stayers are a natural population
of interest; nonparametric identification and estimation of structural parameters for stayers
have been extensively studied in the literature (Evdokimov, 2010; Graham and Powell, 2012;
Hoderlein and White, 2012; Chernozhukov et al., 2015). Second, the moments and the
distribution of marginal effects for stayers are identified in our fixed effect setting.

2.2 Identification of Moments

We now turn to the identification of conditional moments 𝜇𝑘(𝑥) of the marginal effect
𝜕𝑥𝑚(𝑥, 𝛼𝑖) for the population of stayers at 𝑥, where 𝑥 is ranges in some interval 𝐼 = [𝑥𝑙𝑏, 𝑥𝑢𝑏].

In order to identify 𝜇𝑘(𝑥), consider the following intuitive argument. Let ℎ ̸= 0. By the
mean value theorem and intermediate value theorems it holds that(︂

𝑚(𝑥+ ℎ, 𝛼𝑖)−𝑚(𝑥− ℎ, 𝛼𝑖)

2ℎ

)︂𝑘
= (𝜕𝑥𝑚(�̃�, 𝛼𝑖))

𝑘 , (3)

�̃� = �̃�(ℎ, 𝛼𝑖) ∈ [𝑥− ℎ, 𝑥+ ℎ].

Taking expectations conditional on the event 𝐵𝑥−ℎ,2ℎ = {𝑋𝑖1 = 𝑥 − ℎ,𝑋𝑖2 = 𝑥 + ℎ}, we
obtain that for all ℎ ̸= 0

Δ𝑘(𝑥, ℎ) := E

[︃(︂
𝑚(𝑥+ ℎ, 𝛼𝑖)−𝑚(𝑥− ℎ, 𝛼𝑖)

2ℎ

)︂𝑘 ⃒⃒⃒⃒⃒𝐵𝑥−ℎ,2ℎ

]︃
(4)

= E
[︁
(𝜕𝑥𝑚(�̃�, 𝛼𝑖))

𝑘 |𝐵𝑥−ℎ,2ℎ

]︁
.

The moment 𝜇𝑘(𝑥) is identified as the limit of Δ𝑘(𝑥, ℎ) as ℎ → 0 if the following two
conditions hold:
(1) E[(𝜕𝑥𝑚(�̃�, 𝛼))𝑘 |𝐵𝑥−ℎ,2ℎ] converges to 𝜇𝑘(𝑥) as ℎ→ 0.
(2) Δ𝑘(𝑥, ℎ) is identified for all ℎ > 0 small enough.

For the first condition, note that E[(𝜕𝑥𝑚(�̃�, 𝛼))𝑘 |𝐵𝑥−ℎ,2ℎ] is approximately the 𝑘th moment
of marginal effects for the near-stayers – the population with 𝑋𝑖1 = 𝑥− ℎ and 𝑋𝑖2 = 𝑥+ ℎ.
If the stayers are the limit of near stayers as ℎ→ 0 in a suitable sense, then (1) holds.

For the second condition, we make use of model (2). The 𝑘th conditional moment of
(𝑌𝑖2 − 𝑌𝑖1)/(2ℎ) is given by

E

[︃(︂
𝑌𝑖2 − 𝑌𝑖1

2ℎ

)︂𝑘 ⃒⃒⃒
𝐵𝑥−ℎ,2ℎ

]︃
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= E

[︃(︂
(𝑚(𝑥+ ℎ, 𝛼𝑖)−𝑚(𝑥− ℎ, 𝛼𝑖)) + (𝑢𝑖2 − 𝑢𝑖2)

2ℎ

)︂𝑘 ⃒⃒⃒
𝐵𝑥−ℎ,2ℎ

]︃
.

By conditional independence of 𝑢𝑖2, 𝑢𝑖1 and 𝛼𝑖 (assumption 2.1), the above is equal to

𝑘∑︁
𝑗=0

(︂
𝑘

𝑗

)︂
Δ𝑗(𝑥, ℎ)

∑︀𝑗
𝑙=0

(︀
𝑗
𝑙

)︀
E
[︀
𝑢𝑙𝑖2|𝑋𝑖2 = 𝑥+ ℎ

]︀
E
[︁
𝑢𝑗−𝑙𝑖1 |𝑋𝑖1 = 𝑥− ℎ

]︁
(2ℎ)𝑘−𝑗

. (5)

For 𝑘 = 1 eq. (5) shows that Δ1(𝑥, ℎ) = E [(𝑌𝑖2 − 𝑌𝑖1)/(2ℎ)|𝐵𝑥−ℎ,2ℎ] as E[(𝑢𝑖2−𝑢𝑖1)|𝐵𝑥−ℎ,2ℎ] =

0 under assumption 2.1. E
[︀
(𝑌𝑖2 − 𝑌𝑖1)

𝑘/(2ℎ)|𝐵𝑥−ℎ,2ℎ
]︀

is identified from the data for all 𝑘,
𝑥 ∈ 𝐼 and ℎ > 0 small enough if suitable near-stayers are present in the data. We conclude
that Δ1(𝑥, ℎ) may identified for all ℎ small enough. Hoderlein and White (2012) obtain a
similar result for the first moment in a somewhat more general model.

Higher-order moments Δ𝑘(𝑥, ℎ) can be identified recursively from (5) if suitable moments
of 𝑢𝑖2 and 𝑢𝑖1 are identified. As lemma 2.1 below shows, these moments can be recovered
from stayers with {𝑋𝑖1 = 𝑋𝑖2 = 𝑥± ℎ}, provided such stayers exist in the data.

To formalize the above logic, we impose two assumptions under which conditions (1) and
(2) hold. First, we assume that the stayers are the limit of near-stayers in the following sense:

Assumption 2.2 (Continuity). (i) Let 𝐹𝛼|𝑋=𝑥(·) be the conditional law of 𝛼𝑖 given {𝑋𝑖 = 𝑥}
≡ {𝑋𝑖1 = 𝑥1, 𝑋𝑖2 = 𝑥2}. 𝐹𝛼|𝑋=𝑥(·) is well-defined for all 𝑥.1 (ii) 𝐹𝛼|𝑋=𝑥(·) is continuous in
𝑥 with respect to the weak topology, that is, if 𝑥𝑛 → 𝑥, then 𝐹𝛼|𝑋=𝑥𝑛(·) ⇒ 𝐹𝛼|𝑋=𝑥(·)

Part (ii) is the substantial assumption. It assumes that stayers are not discontinuously
different from near-stayers in their unobservables. A similar assumption is also made by
Graham and Powell (2012) and Hoderlein and White (2012) in the context of a linear model.

Second, we assume that the covariate 𝑋𝑖𝑡 is continuously distributed and that there exist
stayers and near-stayers for all ℎ > 0 small enough. Existence of stayers and near stayers
then permits identification of the moments of (𝑌𝑖1, 𝑌𝑖2) given (𝑋𝑖1, 𝑋𝑖2) present in (5).

Assumption 2.3. (i) Let 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2) and X ≡ supp(𝑋𝑖). 𝑋𝑖 is continuously distributed
on X with density 𝑓𝑋 . (ii) Let 𝐼 = [𝑥𝑙𝑏, 𝑥𝑢𝑏]. There exists some 𝜖 > 0 such that the 𝜖-
neighborhood 𝐽 of the set {(𝑥, 𝑥), 𝑥 ∈ 𝐼} ⊂ R2 is strictly contained in X. (iii) The density
𝑓𝑋 is uniformly bounded away from zero on 𝐽 : inf𝑥∈𝐽 𝑓𝑋(𝑥) > 0.

The assumption that 𝑋𝑖 is continuously distributed may be generalized to allow point
masses of stayers at certain values of 𝑥. Such point masses may arise in settings where corner
solution responses are present (Wooldridge, 2010b; Graham and Powell, 2012).

1We refer the interested reader to Tjur (1975) for a construction of continuous disintegrations of measures.
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Before stating the formal results, we introduce some notation. Let 𝑔(𝑦1, 𝑦2) be a real-valued
function of (𝑦1, 𝑦2). Define

𝑟𝑔(𝑥1, 𝑥2) := E [𝑔(𝑌𝑖1, 𝑌𝑖2)|𝑋𝑖1 = 𝑥1, 𝑋𝑖2 = 𝑥2] . (6)

For example, 𝑟(𝑦2−𝑦1)𝑘(𝑥1, 𝑥2) is E
[︀
(𝑌𝑖2 − 𝑌𝑖1)

𝑘|𝑋𝑖1 = 𝑥1, 𝑋𝑖,2 = 𝑥2
]︀
. Further, define the fol-

lowing moments of 𝑚(𝑥, 𝛼𝑖) and 𝑢𝑖𝑡:

𝜈𝑚𝑘(𝑥):=E
[︀
𝑚𝑘(𝑥, 𝛼𝑖)|𝑋𝑖1 = 𝑋𝑖2 = 𝑥

]︀
,

𝜈𝑢𝑘𝑡 (𝑥):=E
[︀
𝑢𝑘𝑖𝑡|𝑋𝑖𝑡 = 𝑥

]︀
, 𝑡 = 1, 2

𝜈(𝑢2−𝑢1)𝑘(𝑥, ℎ) :=E
[︀
(𝑢𝑖2 − 𝑢𝑖1)

𝑘|𝑋𝑖1 = 𝑥− ℎ,𝑋𝑖2 = 𝑥+ ℎ
]︀

=
𝑘∑︁
𝑗=0

(︂
𝑘

𝑗

)︂
𝜈𝑢𝑗1

(𝑥− ℎ)𝜈𝑢𝑘−𝑗
2

(𝑥+ ℎ). (7)

The following lemma shows that the moments of 𝑢𝑖1 and 𝑢𝑖2 in (5) are indeed identified.
Further, the lemma provides recursive expressions for all the above moments and for Δ𝑘(𝑥, ℎ).
These expressions also serve as a foundation for our moment estimators.

Lemma 2.1. Let assumptions 2.1-2.3 and the technical regularity condition C.1 in the
appendix hold. Let 𝜖, 𝐼, and 𝐽 be as in assumption 2.3.
(1) Let sup𝑥1,𝑥2 E [|𝑔(𝑌𝑖2, 𝑌𝑖2)||𝑋𝑖1 = 𝑥1, 𝑋𝑖2 = 𝑥2] <∞. Then 𝑟𝑔(𝑥1, 𝑥2) is identified for all

(𝑥1, 𝑥2) ∈ 𝐽 .
(2) Let sup𝑥 E

[︁
|𝑢𝑖𝑡|𝐾 |𝑋𝑖𝑡 = 𝑥

]︁
<∞ for some positive integer 𝐾. Then the moments 𝜈𝑚𝑘(𝑥),

𝜈𝑢𝑘𝑡 (𝑥), 𝜈(𝑢2−𝑢1)𝑘(𝑥, ℎ) are identified for 𝑥 ∈ (𝑥𝑙𝑏− 𝜖, 𝑥𝑢𝑏+ 𝜖) and all non-negative integers
𝑘 ≤ 𝐾. In particular, if 𝑘 = 0, 𝜈𝑢01(𝑥) = 𝜈𝑢02(𝑥) = 1; if 𝑘 = 1, 𝜈𝑢11(𝑥) = 𝜈𝑢12(𝑥) = 0 and
𝜈𝑚1(𝑥) = 𝑟𝑦2(𝑥, 𝑥), and if 𝑘 ≥ 2

𝜈𝑢𝑘1 (𝑥) = 𝑟𝑦𝑘−1
1 (𝑦1−𝑦2)(𝑥, 𝑥)−

𝑘−1∑︁
𝑗=1

(︂
𝑘 − 1

𝑗

)︂
𝜈𝑚𝑗(𝑥)𝜈𝑢𝑘−𝑗

1
(𝑥), (8)

𝜈𝑢𝑘2 (𝑥) = 𝑟𝑦𝑘−1
2 (𝑦2−𝑦1)(𝑥, 𝑥)−

𝑘−1∑︁
𝑗=1

(︂
𝑘 − 1

𝑗

)︂
𝜈𝑚𝑗(𝑥)𝜈𝑢𝑘−𝑗

2
(𝑥), (9)

𝜈𝑚𝑘(𝑥) = 𝑟𝑦𝑘−1
1 𝑦2

(𝑥, 𝑥)−
𝑘−1∑︁
𝑗=1

(︂
𝑘 − 1

𝑗 − 1

)︂
𝜈𝑚𝑗(𝑥)𝜈𝑢𝑘−𝑗

1
(𝑥). (10)

(3) The moments of the finite difference Δ𝑘(𝑥, ℎ) are identified for 𝑥 ∈ 𝐼, 0 < |ℎ| < 𝜖 and
non-negative integers 𝑘 ≤ 𝐾 as

Δ𝑘(𝑥, ℎ) =
𝑟(𝑦2−𝑦1)𝑘(𝑥− ℎ, 𝑥+ ℎ)

(2ℎ)𝑘
−

𝑘−1∑︁
𝑗=0

(︂
𝑘

𝑗

)︂
Δ𝑗(𝑥, ℎ)

𝜈(𝑢2−𝑢1)𝑘−𝑗(𝑥, ℎ)

(2ℎ)𝑘−𝑗
. (11)

With lemma 2.1 in hand, we can now state a full identification result for 𝜇𝑘(𝑥).
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Theorem 2.2. Let assumptions 2.1-2.3 and the technical regularity condition C.1 in the
appendix hold. Let 𝑘 be a positive integer such that sup𝑥 E[|𝑢𝑖𝑡|

𝑘|𝑋𝑖𝑡 = 𝑥] < ∞ for 𝑡 = 1, 2.
Then 𝜇𝑘(𝑥) = E

[︀
(𝜕𝑥𝑚(𝑥, 𝛼𝑖))

𝑘|𝑋𝑖1 = 𝑋𝑖2 = 𝑥
]︀

is identified for each 𝑥 ∈ 𝐼 as limℎ→0 Δ𝑘(𝑥, ℎ).

Theorem 2.2 shows that it is possible to identify all moments of marginal effects, and not
just average effects, while allowing for multivariate unobserved heterogeneity. In particular,
it is possible to identify the variance (𝜇2(𝑥)− 𝜇2

1(𝑥)) of marginal effects, provided the second
moments of 𝑢𝑖𝑡 are finite.

Fundamentally, the identification arguments of theorem 2.2 rest on two pillars. First, the
within variation of near stayers permits us to identify suitable moments Δ𝑘(𝑥, ℎ) of the finite
difference for arbitrarily small values of ℎ. Second, continuity of the conditional law of 𝛼𝑖
allows us to express the moments 𝜇𝑘(𝑥) for stayers as the limit of Δ𝑘(𝑥, ℎ) as ℎ→ 0.

Remark 1. The identification argument stemming from eq. (3) uses a two-sided finite
difference. For a given point 𝑥, it requires the existence of units with 𝑋𝑖1 = 𝑥− ℎ for positive
ℎ small enough. However, such units might not exist if 𝑥 is, for example, the minimal wage
in a labor supply application. In this case our argument can be generalized to use a one-sided
differences that only requires units with {𝑋𝑖1 = 𝑥,𝑋𝑖2 = 𝑥+ ℎ} or {𝑋𝑖1 = 𝑥− ℎ,𝑋𝑖2 = 𝑥}.

2.3 Identification of the Distribution

The distribution of 𝜕𝑥𝑚(𝑥, 𝛼𝑖) is completely characterized by its moments 𝜇𝑘(𝑥) under our
assumption that 𝜕𝑥𝑚(𝑥, 𝑎) is bounded uniformly in 𝑎 and 𝑥. Thus, if 𝜇𝑘(𝑥) is identified for
all positive integers 𝑘, then so is the corresponding distribution. We formally state this result.

Theorem 2.3. Let assumptions 2.1-2.3 and the technical regularity condition C.1 in the
appendix hold. Let sup𝑥 E[|𝑢𝑖𝑡|

𝑘|𝑋𝑖𝑡 = 𝑥] <∞ for all positive integers 𝑘. Then the distribution
of 𝜕𝑥𝑚(𝑥, 𝛼𝑖) conditional on {𝑋𝑖1 = 𝑋𝑖2 = 𝑥} is identified for each 𝑥 ∈ 𝐼.

As theorem 2.3 shows, the distribution of marginal effects may be identified in the presence
of unobserved heterogeneity 𝛼𝑖 of unrestricted form. This distribution may then be used to
conduct distributional analysis of impacts of small changes in the covariate 𝑋𝑖𝑡. In addition,
theorem 2.3 strengthens 2.2, as it permits identification of all moments of marginal effects.

Remark 2. The result of theorem 2.3 may also be applied to 𝑢𝑖𝑡. The distribution of 𝑢𝑖𝑡
conditional on {𝑋𝑖𝑡 = 𝑥} is identified in the setting of theorem 2.3 if Carleman’s condition
holds for it, that is,

∑︀∞
𝑘=1(𝜈𝑢2𝑘𝑡 (𝑥))−1/2𝑘 = ∞.
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3 Estimation

We now turn to estimation. In line with our identification results, we first discuss estimation
of moments of the marginal effects 𝜕𝑥𝑚(𝑥, 𝛼𝑖). We then leverage those moment estimators to
obtain a suitable estimator for the distribution of 𝜕𝑥𝑚(𝑥, 𝛼𝑖).

3.1 Estimation of Moments

In order to provide a simple estimator of 𝜇𝑘(𝑥), we first refine the argument of the previous
section. Characterizing 𝜇𝑘(𝑥) as the limit of Δ𝑘(𝑥, ℎ) as ℎ→ 0 allows identification under
fairly general assumptions. The expressions of lemma 2.1 can then be used to construct an
estimator for Δ𝑘(𝑥, ℎ) for any ℎ ≠ 0. Δ𝑘(𝑥, ℎ) would in turn approximate 𝜇𝑘(𝑥) as ℎ tends
to 0. However, in practice a positive but not large value of the ℎ would be necessary. Taking
ℎ too small may lead to unstable estimates in finite samples, while taking ℎ too large may
mean that Δ𝑘(𝑥, ℎ) is far from 𝜇𝑘(𝑥). Thus, a rule for choosing ℎ would be necessary – the
discretization parameter ℎ becomes a tuning parameter of the problem. To avoid this choice,
we establish an alternative characterization for 𝜇𝑘(𝑥) in terms of 𝑘th derivatives of certain
expectations, if these derivatives exist. Such a characterization then allows us to construct
straightforward estimators that do not require choosing ℎ.

To obtain an alternative characterization of 𝜇𝑘(𝑥), consider the following intuitive argu-
ment. For 𝑥 ∈ 𝐼 and ℎ small enough (including zero), define 𝐷𝑘(𝑥, ℎ) as

𝐷𝑘(𝑥, ℎ) := E
[︀
(𝑚(𝑥+ ℎ, 𝛼𝑖)−𝑚(𝑥− ℎ, 𝛼𝑖))

𝑘|𝑋𝑖1 = 𝑥− ℎ,𝑋𝑖2 = 𝑥+ ℎ
]︀
. (12)

Note that 𝐷𝑘(𝑥, ℎ) is simply (2ℎ)𝑘Δ𝑘(𝑥, ℎ). Thus 𝐷𝑘(𝑥, ℎ) identified for all 𝑥 ∈ 𝐼 and all ℎ
small enough by lemma 2.1.

Fix 𝑥 ∈ 𝐼. By the mean value theorem (𝑚(𝑥 + ℎ, 𝛼𝑖) − 𝑚(𝑥 − ℎ, 𝛼𝑖))
𝑘 is equal to

(2ℎ)𝑘(𝜕𝑥𝑚(�̃�, 𝛼𝑖))
𝑘 for some point �̃� = �̃�(ℎ, 𝛼𝑖) ∈ [𝑥− ℎ, 𝑥+ ℎ], as in eq. (3). Returning to

eq. (12), we can further add and subtract (2ℎ)𝑘𝜇𝑘(𝑥) to obtain

𝐷𝑘(𝑥, ℎ) = (2ℎ)𝑘𝜇𝑘(𝑥)

+ (2ℎ)𝑘
[︀
E
[︀
(𝜕𝑥𝑚(�̃�, 𝛼𝑖))

𝑘|𝑋𝑖1 = 𝑥− ℎ,𝑋𝑖2 = 𝑥+ ℎ
]︀
− 𝜇𝑘(𝑥)

]︀⏟  ⏞  
=:𝜃(ℎ)

.

Differentiating the first term on the right hand side 𝑘 times with respect to ℎ yields 2𝑘𝑘!𝜇𝑘(𝑥).
At the same time, suppose that (1) 𝜃(ℎ) is 𝑘 times differentiable for ℎ in some neighborhood
of 0; (2) the 𝑘th derivative of 𝜃(ℎ) at ℎ = 0 is equal to 0. Then we can then obtain 𝜇𝑘(𝑥)
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from the 𝑘th derivative of 𝐷𝑘 with respect to ℎ at ℎ = 0 as

𝜇𝑘(𝑥) =
1

2𝑘𝑘!
𝜕𝑘ℎ𝐷𝑘(𝑥, 0). (13)

In order to formalize the above logic, we impose several smoothness assumptions that we
formally state in the proof appendix (assumptions D.1-D.4). Informally, these assumptions
require that the model (2) be sufficiently smooth in 𝑥. We impose smoothness in (𝑥1, 𝑥2) on the
structural function 𝑚 and the conditional distribution of 𝑢𝑖𝑡 and 𝛼𝑖 given {𝑋𝑖1 = 𝑥1, 𝑋𝑖2 = 𝑥2}.
Each component is assumed to be differentiable at least 𝑘 times. We also assume that 𝑢𝑖𝑡 is
distributed continuously conditional on 𝑋𝑖𝑡. Together, these assumptions imply that 𝐷𝑘(𝑥, ℎ),
𝜃(ℎ), and the moments of eqs. (6)-(7) are all differentiable 𝑘 times.

The following theorem formally states our differentiation-based identification result for
𝜇𝑘(𝑥) under the additional smoothness assumptions described above. It offers an explicit
expression for 𝜇𝑘(𝑥), rather than the limit-based characterization of theorem 2.2.

Theorem 3.1. Let assumptions 2.1-2.3 and C.1 hold. Further, let the smoothness assumptions
D.1-D.4 in the appendix hold with 𝜏 ≥ 𝑘. Let sup𝑥 E[|𝑢𝑖𝑡|

𝑘|𝑋𝑖𝑡 = 𝑥] <∞ for 𝑡 = 1, 2. Then
(1) 𝐷𝑘(𝑥, ℎ) is identified for all 𝑥 ∈ 𝐼 and ℎ ∈ (−𝜖, 𝜖) for 𝐼 and 𝜖 of assumption 2.3.
(2) 𝐷𝑘 is 𝑘 times differentiable in ℎ for ℎ ∈ (−𝜖, 𝜖)
(3) Eq. (13) holds.

In light of theorem 3.1, an estimator for 𝜇𝑘(𝑥) can be obtained by constructing an
estimator for 𝜕𝑘ℎ𝐷𝑘(𝑥, 0). Such an estimator will directly target 𝜇𝑘(𝑥), rather than Δ𝑘(𝑥, ℎ),
and will not require choosing ℎ (informally, ℎ is automatically set to 0).

To construct an estimator for 𝜕𝑘ℎ𝐷𝑘(𝑥, ℎ), observe that eq. (11) can be restated in terms
of 𝐷𝑘(𝑥, ℎ) as follows:

𝐷𝑘(𝑥, ℎ) = 𝑟(𝑦2−𝑦1)𝑘(𝑥− ℎ, 𝑥+ ℎ)−
𝑘−1∑︁
𝑗=0

(︂
𝑘

𝑗

)︂
𝐷𝑗(𝑥, ℎ)𝜈(𝑢2−𝑢1)𝑘−𝑗(𝑥, ℎ). (14)

Correspondingly, the 𝑘th derivative of 𝐷𝑘(𝑥, ℎ) with respect to ℎ is given by

𝜕𝑘ℎ𝐷𝑘(𝑥, ℎ) = 𝜕𝑘ℎ𝑟(𝑦2−𝑦1)𝑘(𝑥− ℎ, 𝑥+ ℎ) (15)

−
𝑘−1∑︁
𝑗=0

(︂
𝑘

𝑗

)︂[︃ 𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂(︀
𝜕𝑖ℎ𝐷𝑗(𝑥, ℎ)

)︀ (︀
𝜕𝑘−𝑖ℎ 𝜈(𝑢2−𝑢1)(𝑘−𝑗)(𝑥, ℎ)

)︀]︃
.

𝜕𝑘ℎ𝐷𝑘(𝑥, ℎ) depends on the 𝑘th derivative of the conditional expectation of (𝑌𝑖2 − 𝑌𝑖1)
𝑘. It

also depends on all the derivatives of order at most 𝑘 of 𝜈(𝑢2−𝑢1)𝑗 (𝑥, ℎ) and 𝐷𝑗(𝑥, ℎ) for 𝑗 < 𝑘.
These derivatives may be obtained by differentiating eqs. (7) and (14), respectively.
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The estimator �̂�𝑘(𝑥) is now obtained by replacing all population objects in eq. (15) by
suitable sample analogs. Algorithm 1 formally defines �̂�𝑘(𝑥). The required derivatives are
obtained by differentiating equations (6), (7), (14), and the expressions of lemma 2.1, and
replacing the population objects by sample analogs in the resulting equations.

Algorithm 1: Estimation of 𝜇𝑘(𝑥) for 𝑘 = 1, . . . , 𝐾

1 For 𝑔 ∈ {(𝑦2 − 𝑦1)𝑗 , 𝑦
𝑗−1
1 (𝑦1 − 𝑦2), 𝑦

𝑗−1
2 (𝑦2 − 𝑦1), 𝑦

𝑗−1
1 𝑦2, 𝑗 ∈ 1, 2, . . . , 𝑘} let 𝜕𝑙ℎ𝑟𝑔(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0

⋀︀

and

𝜕𝑙ℎ𝑟𝑔(𝑥± ℎ, 𝑥± ℎ)|ℎ=0

⋀︀

be the local polynomial estimators of order 𝑞 of 𝜕𝑙ℎ𝑟𝑔(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0 and
𝜕𝑙ℎ𝑟𝑔(𝑥± ℎ, 𝑥± ℎ)|ℎ=0 for 𝑙 = 0, 1, . . .𝐾 (see the Implementation Appendix)

2 Set for 𝑙 = 0, 1, . . . ,𝐾

𝜕𝑙ℎ𝜈𝑢1
1
(𝑥− ℎ)|ℎ=0

⋀︀

= 𝜈𝑢1
2
(𝑥+ ℎ)|ℎ=0

⋀︀

= 0,

𝜕𝑙ℎ𝐷1(𝑥, 0)
⋀︀

= 𝜕𝑙ℎ𝑟(𝑦2−𝑦1)(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0

⋀︀

,

𝜕𝑙ℎ𝜈𝑚(𝑥± ℎ)|ℎ=0

⋀︀

= 𝑟𝑦2 (𝑥± ℎ, 𝑥± ℎ)|ℎ=0

⋀︀

3 Set

�̂�1(𝑥) =
1

2
𝜕ℎ𝐷1(𝑥, 0)
⋀︀

,

4 if 𝐾 ≥ 2 then
5 Set 𝑘 = 2 and while 𝑘 ≤ 𝐾 do
6 Estimate the 𝑙th derivative (𝑙 = 0, 1, . . . ,𝐾) of the 𝑘th moment of 𝑢1 using eq. (8)

𝜕𝑙ℎ𝜈𝑢𝑘
1
(𝑥− ℎ)|ℎ=0

⋀︀

= 𝜕𝑙ℎ𝑟𝑦𝑘−1
1 (𝑦1−𝑦2)

(𝑥− ℎ, 𝑥− ℎ)|ℎ=0

⋀︀

−
𝑘−1∑︁
𝑗=1

(︁𝑘 − 1

𝑗

)︁[︃
𝑙∑︁

𝑖=0

(︁𝑙
𝑖

)︁(︁
𝜕𝑖ℎ𝜈𝑚𝑗 (𝑥− ℎ)|ℎ=0

⋀︀)︁(︂
𝜕𝑙−𝑖
ℎ 𝜈

𝑢
𝑘−𝑗
1

(𝑥− ℎ)|ℎ=0

⋀︀)︂]︃
7 Estimate the 𝑙th derivative (𝑙 = 0, 1, . . . ,𝐾) of the 𝑘th moment of 𝑢2 using eq. (9)

𝜕𝑙ℎ𝜈𝑢𝑘
2
(𝑥+ ℎ)|ℎ=0

⋀︀

= 𝜕𝑙ℎ𝑟𝑦𝑘−1
2 (𝑦2−𝑦1)

(𝑥+ ℎ, 𝑥+ ℎ)|ℎ=0

⋀︀

−
𝑘−1∑︁
𝑗=1

(︁𝑘 − 1

𝑗

)︁[︃
𝑙∑︁

𝑖=0

(︁𝑙
𝑖

)︁(︁
𝜕𝑖ℎ𝜈𝑚𝑗 (𝑥+ ℎ)|ℎ=0

⋀︀)︁(︂
𝜕𝑙−𝑖
ℎ 𝜈

𝑢
𝑘−𝑗
2

(𝑥+ ℎ)|ℎ=0

⋀︀)︂]︃
8 Estimate the 𝑙th derivative (𝑙 = 0, 1, . . . ,𝐾) of 𝜈(𝑢2−𝑢1)𝑘

(𝑥, ℎ) at ℎ = 0:

𝜕𝑙ℎ𝜈(𝑢2−𝑢1)𝑘
(𝑥, 0)

⋀︀

=

𝑘∑︁
𝑗=0

(︁𝑘
𝑗

)︁[︃
𝑙∑︁

𝑖=0

(︁𝑙
𝑖

)︁(︁
𝜕𝑖ℎ𝜈𝑢𝑗

1
(𝑥− ℎ)|ℎ=0

⋀︀)︁(︂
𝜕𝑙−𝑖
ℎ 𝜈

𝑢
𝑝−𝑗
2

(𝑥+ ℎ)|ℎ=0

⋀︀)︂]︃
.

9 Estimate the 𝑙th derivative (𝑙 = 0, 1, . . . ,𝐾) of 𝐷𝑘(𝑥, ℎ) at ℎ = 0 using eq. (14):

𝜕𝑙ℎ𝐷𝑘(𝑥, 0)
⋀︀

= 𝜕𝑙ℎ𝑟(𝑦2−𝑦1)𝑘
(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0

⋀︀

−
𝑘−1∑︁
𝑗=0

(︁𝑘
𝑗

)︁[︃
𝑙∑︁

𝑖=0

(︁𝑙
𝑖

)︁(︁
𝜕𝑖ℎ𝐷𝑗(𝑥, ℎ)
⋀︀)︁(︂

𝜕𝑙−𝑖
ℎ 𝜈(𝑢2−𝑢1)

(𝑘−𝑗) (𝑥, ℎ)

⋀︀)︂]︃
.

10 Set the moment estimator

�̂�𝑘(𝑥) = 𝜕𝑘ℎ𝐷𝑘(𝑥, 0)
⋀︀

.
if k<K then

11 Estimate the 𝑙th derivative (𝑙 = 0, 1, . . . ,𝐾) of the 𝑘th moment of 𝑚 using eq. (10)

𝜕𝑙ℎ𝜈𝑚𝑘 (𝑥± ℎ)|ℎ=0

⋀︀

=𝑟
𝑦𝑘−1
1 𝑦2

(𝑥± ℎ, 𝑥± ℎ)|ℎ=0

⋀︀

−
𝑝−1∑︁
𝑗=1

(︁𝑘 − 1

𝑗 − 1

)︁[︃
𝑙∑︁

𝑖=0

(︁𝑙
𝑖

)︁(︁
𝜕𝑖ℎ𝜈𝑚𝑗 (𝑥± ℎ)|ℎ=0

⋀︀)︁(︂
𝜕𝑙−𝑖
ℎ 𝜈

𝑢
𝑝−𝑗
1

(𝑥± ℎ)|ℎ=0

⋀︀)︂]︃
.

12 Set 𝑘 = 𝑘 + 1

13 end
14 end
15 end
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Intuitively, estimation can be broken down into three steps. In the first step we estimate
conditional moments of (𝑌𝑖2, 𝑌𝑖1) and their derivatives. Formally, we estimate 𝑟𝑔 and all
of its derivatives up to order 𝑘, where the functions 𝑔 form the set {(𝑦2 − 𝑦1)

𝑗, 𝑦𝑗−1
1 (𝑦1 −

𝑦2), 𝑦
𝑗−1
2 (𝑦2−𝑦1), 𝑦𝑗−1

1 𝑦2, 𝑗 ∈ 1, 2, . . . , 𝑘}. We propose estimating these objects simultaneously
by running a local polynomial regression of order 𝑞 (LP(𝑞)) of 𝑔(𝑌𝑖1, 𝑌𝑖,2) on (𝑋𝑖1, 𝑋𝑖,2),
where 𝑞 ≥ 𝑘 + 1, although any other nonparametric approach may be used (see Fan and
Gijbels (1996) for a reference on LP estimation). An LP(𝑞)-based approach is practically
appealing, as all the necessary estimators exist in closed form and require no optimization. In
the Implementation Appendix we propose a convenient approach that allows computing all
the necessary derivatives for all the functions 𝑔 simultaneously with only three applications
of LP(𝑞) regression. Second, we estimate the moments of 𝑢𝑖1, 𝑢𝑖2 and 𝑚(𝑥, 𝛼𝑖) and their
derivatives of order up to 𝑘 according to algorithm 1. By replacing population moments with
sample equivalents in lemma 2.1, we obtain estimators for 𝜈𝑢𝑘𝑡 and 𝜈𝑚𝑘 and their derivatives.
The estimated derivatives of 𝜈𝑢𝑘𝑡 are then combined to form an estimator for 𝜕𝑙ℎ𝜈(𝑢2−𝑢1)𝑗 (𝑥, ℎ).
Third and last, estimators for 𝜕𝑙ℎ𝐷𝑗(𝑥, ℎ), 𝑙 = 0, 1, . . . , 𝑘, 𝑗 = 1, . . . , 𝑘 are formed by evaluating
eq. (15) recursively starting from 𝑗 = 1 until reaching 𝑗 = 𝑘. The estimator �̂�𝑘(𝑥) is obtained
by dividing the estimated value for 𝜕𝑘ℎ𝐷𝑘(𝑥, 0) by (2𝑘𝑘!).

The estimator �̂�𝑘(𝑥) is consistent and asymptotically normal, as we establish in the section
4, provided that the smoothing bandwidth of the LP(𝑞) estimators is chosen appropriately.
Suitable confidence intervals for 𝜇𝑘(𝑥) may be constructed by nonparametric bootstrap,
recomputing �̂�𝑘(𝑥) in bootstrap samples according to algorithm 1.

Remark 3 (Choosing the bandwidth parameter of the LP estimators). The moments of
interest 𝜇𝑘(𝑥) are estimated most accurately when the first step estimators of moments of
(𝑌𝑖1, 𝑌𝑖2) are as accurate as possible, as algorithm 1 implies. In turn, the precision of the
first-step LP estimators is determined by the corresponding smoothing bandwidth. The
MSE optimal bandwidth(s) may be obtained with the data-driven method of Charnigo
and Srinivasan (2015), who propose a generalized 𝐶𝑝 approach targeted at nonparametric
estimation of derivatives of multivariate functions.

Remark 4 (Estimation based on moments of the finite difference). Alternative moment
estimators may be formed by estimating Δ𝑘(𝑥, ℎ) using a sample version of eq. (11). There
are two key differences between the estimator �̂�𝑘(𝑥) proposed in this section and an estimator
targeting Δ𝑘(𝑥, ℎ). First, estimating Δ𝑘(𝑥, ℎ) requires choosing a positive value for ℎ that
controls the bias-variance trade-off described at the beginning of this section. This difficulty
is not present in �̂�𝑘(𝑥). Second, �̂�𝑘(𝑥) imposes somewhat stronger smoothness properties.
Theorem 3.1 requires every component of the model to be differentiable at least 𝑘 times in 𝑥.
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Further, at least 𝑘 + 3 derivatives are needed to establish convergence rates and asymptotic
normality of �̂�𝑘(𝑥) (see section 4). In contrast, regardless of 𝑘, only 3 derivatives are needed
to show consistency and asymptotic normality of an estimator based on Δ𝑘(𝑥, ℎ), as we
formally show in the Supplementary Appendix.

3.2 Estimation of the Distribution

We now turn to estimating the distribution function 𝐹0(𝑣|𝑥) of marginal effects. We outline
the general approach, define our estimators, and offer some discussion. Technical details and
asymptotic properties of the estimators are deferred to section 5.

We differentiate between two problems: estimating 𝐹0(𝑣|𝑥0) at one fixed point 𝑥0 and
estimating the bivariate function 𝐹0(𝑣|𝑥) as 𝑥 varies in 𝐼 = [𝑥𝑙𝑏, 𝑥𝑢𝑏]. Although the two goals
are equivalent in population, they are not necessarily equivalent in finite samples. Estimating
the full conditional cdf for an interval of values for 𝑥 yields a cdf smooth in the conditioning
argument, in line with the smoothness assumption 2.2. Further, this approach permits quick
evaluation of the estimates for any value in 𝑥 ∈ 𝐼, and does not require reestimating the
distribution at every point separately. However, it is less flexible in 𝑥.

In both cases we approximate the distribution with a finite mixture. The mixture weights
are chosen by projecting estimated moments onto the space of moments of corresponding
mixtures. The key difference between the two cases lies in how the mixing probabilities are
modeled. In the case of estimation at one point, the mixing probabilities are just a real
vector. In contrast, in case of estimating on an interval the mixing probabilities are allowed
to vary as a function of 𝑥. We approximate these functions of 𝑥 using Bernstein polynomials.

Estimation of 𝐹0(𝑣|𝑥0) for 𝑥0 fixed Consider first estimating 𝐹0(𝑣|𝑥0) for a fixed 𝑥0 ∈ 𝐼.
We can model the unknown distribution function 𝐹0(𝑣|𝑥0) using the following mixture

approximation. Let 𝑝 be a positive integer. Let 𝑣1,𝑝 < 𝑣2,𝑝 < · · · < 𝑣𝑝,𝑝 be the (fixed) mixture
centers (see remark 5 below). Let Ψ be a smooth reference cdf; in section 5 we specify how
to pick Ψ to obtain nonparametric consistency. Finally, let 𝛾 be a 𝑝-vector that satisfies∑︀𝑝

𝑖=1 𝛾𝑖 = 1, 𝛾𝑖 ≥ 0; 𝛾 is the vector of mixing probabilities. We model 𝐹0(·|𝑥0) with a finite
mixture distribution with 𝑝 components and mixing weights 𝛾 as

Λ𝑝(𝑣|𝛾) =
𝑝∑︁
𝑗=1

𝛾𝑗Ψ(𝑣 − 𝑣𝑗,𝑝). (16)

Modeling 𝐹0(𝑣|𝑥0) using Λ𝑝(𝑣|𝛾) may be interpreted nonparametrically or parametrically.
First, consider a nonparametric perspective. In this case there may be no value of 𝑝 or 𝛾
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such that 𝐹0(𝑣|𝑥0) = Λ𝑝(𝑣|𝛾). However, the distributions Λ𝑝(𝑣|𝛾) can approximate 𝐹0(𝑣|𝑥0)
arbitrarily well if 𝑝 is taken large enough, and Ψ, 𝑣𝑗,𝑝, and 𝛾 are selected as in section
5.2. In this interpretation the functions Λ𝑝(𝑣|𝛾) form increasingly complex spaces as 𝑝
grows. These spaces act as sieve spaces for 𝐹0(𝑣|𝑥0).2 Alternatively, in the parametric case
𝐹0(𝑣|𝑥0) = Λ𝑝(𝑣|𝛾0) for some 𝑝 and some vector 𝛾0, and the model is exact.

The mixture weights 𝛾 are selected in the same manner regardless of the interpretation
of Λ𝑝(𝑣|𝛾). Let 𝐾 be a positive integer and �̃�𝑘(𝑥0) be a consistent estimator for 𝜇𝑘(𝑥0),
𝑘 = 1, . . . , 𝐾 − 1. �̃�𝑘(𝑥0) may be the estimator �̂�𝑘(𝑥) of section 3.1, an estimator of Δ𝑘(𝑥, ℎ),
etc. Let 𝜆𝑁 ≥ 0. Define

�̃�𝑁(𝛾|𝑥0) =
𝐾−1∑︁
𝑘=1

1

𝑘!

[︂
�̃�𝑘(𝑥0)−

∫︁
𝑣𝑘Λ𝑝(𝑑𝑣|𝛾)

]︂2

≡
𝐾−1∑︁
𝑘=1

1

𝑘!

[︃
�̃�𝑘(𝑥0)−

𝑝∑︁
𝑗=1

𝛾𝑗

∫︁
𝑣𝑘Ψ(𝑑(𝑣 − 𝑣𝑗,𝑝))

]︃2
. (17)

The pointwise estimator at 𝑥0 is defined as

𝐹𝑁(𝑣|𝑥0) = Λ𝑝(𝑣|�̃�) (18)

where �̃� is defined as

�̃� = argmin
𝛾:
∑︀𝑝

𝑗=1 𝛾𝑗=1,𝛾𝑗≥0

�̃�𝑁(𝛾|𝑥0) + 𝜆𝑁

𝑝∑︁
𝑗=1

𝛾2𝑗 , (19)

where we assume that 𝐾 ≥ 𝑝 or 𝜆𝑁 > 0. The objective function is strictly convex in 𝛾 on
the constraint set and �̃� is the unique minimizer of the criterion function.

The interpretation of the estimator 𝐹𝑁 (𝑣|𝑥0) and the choice of 𝐾 reflect the interpretation
of Λ𝑝(𝑣|𝛾). In the nonparametric case, 𝐹𝑁(𝑣|𝑥0) is a penalized sieve estimator. 𝐾 and 𝑝

both tend to infinity as sample size 𝑁 increases. The function �̃�𝑁 (𝛾|𝑥0) aims to measure the
distance between the true distribution function and the sieve approximant in terms of their
moments. As 𝑁 increases, each �̃�𝑘(𝑥0) converges to the true 𝜇𝑘(𝑥0); as 𝐾 increases, more
and more moments are matched. Thus, in the limit the problem of minimizing �̃�𝑁(𝛾|𝑣0)
becomes the problem of minimizing this distance to the true distribution of interest; this
property lies at the root of asymptotic properties of 𝐹𝑁(𝑣|𝑥0) in the nonparametric case. In
the parametric case, 𝐹𝑁 (𝑣|𝑥0) is a method of moments estimator for the mixture distribution
𝐹0(𝑣|𝑥0). In this case it is sufficient to set 𝐾 = 𝑝 and 𝜆𝑁 = 0.

2Such sieves are known as mixture of experts in statistics (Zeevi and Meir, 1997; Li and Barron, 1999;
Norets, 2010).
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The estimation procedure itself has a projection interpretation. The estimated moments
�̃�𝑘(𝑥0) may not be a valid sequence of moments in finite samples in the sense that there is
no distribution corresponding to them.3 Optimizing �̃�𝑁(𝛾|𝑥0) finds the distribution Λ𝑝(𝑣|𝛾)
that best matches the first 𝐾 moments.4 The resulting estimator 𝐹𝑁(𝑣|𝑥0) is always a valid
distribution function.

The estimator 𝐹𝑁(𝑣|𝑥0) has several desirable properties. First, it is easy to compute and
evaluate. The problem of finding �̃� is effectively a simple OLS or ridge regression with a
convex constraint, where the moments �̃�𝑘(𝑥0) play the role of the dependent variable. Further,
𝐾 will typically be fairly small in practice (we explore values 3-8 in our simulation study and
the empirical application). Second, the estimator is consistent. 𝐹𝑁 (𝑣|𝑥0) converges uniformly
to 𝐹0(𝑣|𝑥0), as we show in section 5. Moreover, in the parametric case 𝐹𝑁 (𝑣|𝑥0) converges to
𝐹0(𝑣|𝑥0) in total variation.

Problem (19) is regularized in two ways. First, we restrict our estimate to be a valid
distribution function by the requirement that 𝛾𝑗 ≥ 0 and

∑︀𝑝
𝑗=1 𝛾𝑗 = 1. Second, we potentially

include a Tikhonov regularization term in the objective functions itself. Its inclusion ensures
that the function is strictly convex even if 𝑝 > 𝐾, allowing the functions (16) to have good
approximation properties, at the price of some regularization bias.

Remark 5 (Choice of centers 𝑣𝑗,𝑝). The centers {𝑣𝑗,𝑝}𝑝𝑗=1 may be chosen based on the
estimated mean and variance of marginal effects. Let �̂� > 0 be a constant such that
𝐹0(�̂�1(𝑥0) + �̂� |𝑥0)− 𝐹0(�̂�1(𝑥0)− �̂� |𝑥0) ≥ 1− 𝛽 + 𝑜𝑎.𝑠.(1) for some fixed level 𝛽. �̂� may be
determined by Chebyshev’s inequality, another inequality based on the first two moments,
the 68-95-99.7 rule, or some other approach. Partition the interval [�̂�1(𝑥0)− �̂�, �̂�1(𝑥0) + �̂� ]

into 𝑝 equal-length subintervals and let 𝑣𝑗,𝑝 be the center of the 𝑗th interval. The number
of components 𝑝 should be taken so that the distance between centers is not too large, for
example, not exceeding some multiple of �̂�(𝑥0) :=

√︀
�̂�2(𝑥0)− �̂�2

1(𝑥0). As we show in section
5, such an approach allows the functions Λ𝑝(𝑣|𝛾) to approximate 𝐹0(𝑣|𝑥0) arbitrarily well as
𝑝→ ∞. We note that in the parametric case it is possible to identify and estimate the centers
𝑣𝑗,𝑝 as parameters of the problem using standard techniques of theory of finite mixtures. We
do not pursue this further.

Remark 6. Support of 𝐹0(𝑣|𝑥0) may itself be estimated using the moments 𝜇𝑘(𝑥0). Kazemi,
Shahdoosti, and Mnatsakanov (2017) provide estimators based on the ratio of (𝑘 + 1)st and
𝑘th moments as 𝑘 → ∞.

3See ch. 10 of Schmüdgen (2017) for precise theoretical conditions for a finite vector to be a vector of
moments of some distribution.

4An alternative method is discussed by Wu and Yang (2020) in the context of estimating the (atomic)
mixing distribution for a Gaussian location mixture. They propose to first project the estimated noisy
moments into the moment space, and then fitting an atomic distribution that matches the moments exactly.
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Estimation of 𝐹0(𝑣|𝑥) for 𝑥 ranging in 𝐼 If interest lies in recovering 𝐹0(𝑣|𝑥) for a range
of values of 𝑥, a more refined approximation is needed. We approximate 𝐹0(𝑣|𝑥) with a finite
mixture distribution with mixing probabilities that smoothly depend on 𝑥 as 𝑥 ∈ 𝐼 = [𝑥𝑙𝑏, 𝑥𝑢𝑏].
Let Ψ be as before. Fix 𝑝𝑣, 𝑝𝑥 be positive integers. Let 𝛾 be a 𝑝𝑣 × (𝑝𝑥 + 1) matrix with
(𝑗, 𝑙)th element 𝛾𝑗,𝑙. Let 𝑣1,𝑝𝑣 < 𝑣2,𝑝𝑣 < · · · < 𝑣𝑝𝑣 ,𝑝𝑣 be the mixture centers. Define

Λ𝑝𝑣 ,𝑝𝑥(𝑣|𝑥,𝛾) =
𝑝𝑣∑︁
𝑗=1

[︃
𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)

]︃
Ψ(𝑣 − 𝑣𝑗,𝑝𝑣) , (20)

where
∑︀𝑝𝑣

𝑗=1 𝛾𝑗,𝑙 = 1 for 𝑙 = 0, 1, . . . 𝑝𝑥, 𝛾𝑗,𝑙 ≥ 0 for all 𝑗, 𝑙 and

𝑏𝑙,𝑝𝑥(𝑥) =

(︂
𝑝𝑥
𝑙

)︂(︂
𝑥− 𝑥𝑙𝑏
𝑥𝑢𝑏 − 𝑥𝑙𝑏

)︂𝑙(︂
𝑥𝑢𝑏 − 𝑥

𝑥𝑢𝑏 − 𝑥𝑙𝑏

)︂𝑝𝑥−𝑙
.

Λ𝑝𝑣 ,𝑝𝑥 may be interpreted from a nonparametric or a semi-nonparametric perspective, similarly
to Λ𝑝. In the first case, the distributions Λ𝑝𝑣 ,𝑝𝑥(𝑣|𝑥,𝛾) can approximate the bivariate function
𝐹0(𝑣|𝑥) arbitrarily well as 𝑝𝑣, 𝑝𝑥 → ∞. A full discussion is provided in section 5.2. In the
semi-nonparametric case, 𝐹0(𝑣|𝑥) can be represented as

∑︀𝑝𝑣
𝑗=1 𝜌0,𝑗(𝑥)Ψ (𝑣 − 𝑣𝑗,𝑝𝑣) for some

mixing probabilities 𝜌0,𝑗(𝑥), where the functions 𝜌0,𝑗(𝑥) : 𝐼 → [0, 1] satisfy 𝜌0,𝑗(𝑥) ≥ 0,∑︀𝑝𝑣
𝑗=1 𝜌0,𝑗(𝑥) = 1 for all 𝑥. In this case 𝐹0(𝑣|𝑥) is a finite mixture in 𝑣.
In both cases the mixing probabilities are treated nonparametrically and approximated

using Bernstein polynomials {𝑏𝑙,𝑝𝑥}
𝑝𝑥
𝑙=0 of a growing order 𝑝𝑥. The key advantage of such

an approximation is that the approximated mixing probabilities [
∑︀𝑝𝑥

𝑙=0 𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)] are non-
negative and sum to 1 under simple conditions on the coefficients 𝛾𝑗,𝑙.

We extend the objective function (18) to the interval case by integrating it with respect
to 𝑥 using some measure 𝜋. 𝜋 may be the estimated distribution of stayers as 𝑥 ∈ 𝐼, the
Lebesgue measure or some other measure. Let 𝐾 be a positive integer and 𝜆𝐼𝑁 ≥ 0. Define

�̂�𝑁(𝛾) =

∫︁
𝐼

𝐾−1∑︁
𝑘=1

1

𝑘!

[︂
�̃�𝑘(𝑥)−

∫︁
𝑡𝑘Λ𝑝𝑣 ,𝑝𝑥(𝑑𝑣|𝑥,𝛾)

]︂2
𝜋(𝑑𝑥) (21)

≡
∫︁
𝐼

𝐾−1∑︁
𝑘=1

1

𝑘!

[︃
�̃�𝑘(𝑥)−

∫︁
𝑡𝑘
∑︁
𝑗,𝑙

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)Ψ (𝑑(𝑣 − 𝑣𝑗,𝑝𝑣))

]︃2
𝜋(𝑑𝑥).

We define the interval estimator as

𝐹𝑁(𝑣|𝑥) = Λ𝑝𝑣 ,𝑝𝑥(𝑣|𝑥, �̂�) (22)
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where the weights are determined as

�̂� = argmin
𝛾:𝛾𝑗,𝑙≥0,

∑︀𝑝𝑣
𝑗=1 𝛾𝑗,𝑙=1 ∀𝑙

�̂�𝑁(𝛾) + 𝜆𝐼𝑁
∑︁
𝑗,𝑙

𝛾2𝑗,𝑙. (23)

The interpretation of 𝐹𝑁(𝑣|𝑥) is similar to that of 𝐹𝑁(𝑣|𝑥0). In the nonparametric
case, 𝐹𝑁(𝑣|𝑥) is a penalized sieve estimator; 𝐾, 𝑝𝑣 tend to infinity as 𝑁 increases. In the
semi-nonparametric case, 𝑝𝑣 is held fixed and we may take 𝐾 = 𝑝𝑣. In both cases 𝑝𝑥 → ∞.

The estimator (22) shares the appealing properties of estimator (18). First, it is straight-
forward to compute. By interchanging the sums and the integral, we see that the problem
of finding �̂� in eq. (23) is again an OLS or a ridge regression with convex constraints,
though in this case the constraints are somewhat more complex to ensure that 𝐹𝑁(𝑣|𝑥) is
a valid distribution for all 𝑥 ∈ 𝐼. In the Implementation Appendix we offer a convenient
representation of (23) as a quadratic program. Second, 𝐹𝑁(𝑣|𝑥) is consistent for 𝐹0(𝑣|𝑥)
in the sense that 𝐹𝑁(𝑣|𝑥) is the estimated cdf, then

∫︀
𝐼
sup𝑣|𝐹𝑁(𝑣|𝑥) − 𝐹0(𝑣|𝑥)|𝜋(𝑑𝑥) → 0.

Further, we establish convergence in total variation in the semi-nonparametric case.

4 Asymptotic Properties of Moment Estimators

We now turn to the properties of the moment estimator �̂�𝑘(𝑥) of section 3.1. We begin by
establishing the convergence rate of �̂�𝑘(𝑥) to 𝜇𝑘(𝑥) uniformly in 𝑥 as 𝑥 varies in 𝐼 = [𝑥𝑙𝑏, 𝑥𝑢𝑏].
We then establish asymptotic normality of �̂�𝑘(𝑥), enabling inference on 𝜇𝑘(𝑥).

The first step of constructing �̂�𝑘(𝑥) involves running local polynomial regressions (𝑌𝑖1, 𝑌𝑖2)
on (𝑋𝑖1, 𝑋𝑖2) using a kernel 𝜓𝐿𝑃 (detailed expressions are provided in the Implementation
Appendix). The kernel 𝜓𝐿𝑃 is required to satisfy the following assumption.

Assumption 4.1. The kernel 𝜓𝐿𝑃 : R2 → R satisfies: (i) 𝜓𝐿𝑃 (𝑣1, 𝑣2) has bounded sup-
port; (ii) 𝜓𝐿𝑃 (𝑣1, 𝑣2) is Lipschitz continuous in (𝑣1, 𝑣2) on R2; (iii)

∫︀
𝜓2
𝐿𝑃 (𝑣1, 𝑣2)𝑑𝑣1𝑑𝑣2 <

∞; (iv) 𝜓𝐿𝑃 is a second order kernel in the sense that
∫︀
𝜓𝐿𝑃 (𝑣1, 𝑣2)𝑑𝑣1𝑑𝑣2 = 1 and∫︀

𝑣1𝜓𝐿𝑃 (𝑣1, 𝑣2)𝑑𝑣1𝑑𝑣2 =
∫︀
𝑣2𝜓𝐿𝑃 (𝑣1, 𝑣2)𝑑𝑣1𝑑𝑣2 = 0, 𝜓𝐿𝑃 (𝑣1, 𝑣2) ≥ 0.

The following theorem quantifies the rate of convergence of �̂�𝑘(𝑥) to 𝜇𝑘(𝑥) uniformly as 𝑥
ranges through the interval 𝐼.

Theorem 4.1. Let assumptions 2.1-2.3, 4.1, and C.1 hold. Let the smoothness assumptions
D.1-D.4 in the appendix hold with 𝜏 ≥ 𝑞 + 2 and let 𝑞 ≥ 𝑘 + 1. For some 𝛿 > 0 let
sup𝑥 E

[︀
𝑢2𝑘+𝛿𝑖𝑡 |𝑋𝑖𝑡 = 𝑥

]︀
, 𝑡 = 1,2. Let the first-step LP(𝑞) regressions of 𝑔(𝑌𝑖1, 𝑌𝑖2) on (𝑋𝑖1, 𝑋𝑖2)

use the kernel 𝜓𝐿𝑃 with a diagonal bandwidth matrix diag{𝑠, 𝑠} for some (common) smoothing
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bandwidth 𝑠, where 𝑔 ∈ {(𝑦2 − 𝑦1)
𝑗, 𝑦𝑗−1

1 (𝑦1 − 𝑦2), 𝑦
𝑗−1
2 (𝑦2 − 𝑦1), 𝑦

𝑗−1
1 𝑦2, 𝑗 ∈ 1, 2, . . . , 𝑘}. Let

𝑠→ 0 and log(𝑁)/𝑁𝑠2+2𝑘 → 0. Then

sup
𝑥∈𝐼

|�̂�𝑘(𝑥)− 𝜇𝑘(𝑥)| = 𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2𝑘
+ 𝑠𝑞−𝑘+1

)︃
.

As theorem 4.1 shows, the convergence rate of �̂�𝑘(𝑥) is the same as the convergence rate
of an LP(𝑞) estimator for the 𝑘th derivative (see Stone (1982) and Masry (1996a)). Such a
result is unsurprising in light of eqs. (13) and (15): �̂�𝑘(𝑥) is based on the estimator of the 𝑘th
derivative of 𝐷𝑘, which in turn depends on the 𝑘th derivatives of conditional expectations of
(𝑌𝑖1, 𝑌𝑖2) given (𝑋𝑖1, 𝑋𝑖,2), as algorithm 1 shows.

The smoothness assumptions in theorem 4.1 are slightly stronger than the corresponding
assumptions for identification in theorem 3.1. All components of the model are assumed to
be differentiable at least (𝑞 + 2) times, where 𝑞 is the order of the local polynomial fitted. 𝑞
itself is required to satisfy 𝑞 ≥ (𝑘 + 1) in order to estimate 𝑘th derivatives. Correspondingly,
the theorem assumes the existence of at least (𝑘 + 3) derivatives.

The optimal rate of theorem 4.1 is decreasing in moment order 𝑘 for a given degree of
smoothness 𝑞. If 𝑠 ∼ (log(𝑁)/𝑁)1/2(𝑞+2), then

sup
𝑥∈𝐼

|�̂�𝑘(𝑥)− 𝜇𝑘(𝑥)| = 𝑂𝑎.𝑠.

(︁
(log(𝑁)/𝑁)(𝑞−𝑘+1)/(2(𝑞+2))

)︁
.

Remark 7. Theorem 4.1 assumes that all the first-step LP(𝑞) regressions use a common
smoothing bandwidth 𝑠. This assumption might be relaxed as follows. Associate a bandwidth
𝑠𝑔 to each function 𝑔 and estimate the corresponding LP(𝑞) regression using 𝑠𝑔. The rate result
is be driven by the estimator with the highest variance and the estimator with the highest bias
in sense that sup𝑥∈𝐼 |�̂�𝑘(𝑥)− 𝜇𝑘(𝑥)| = 𝑂𝑎.𝑠.(max𝑔(log(𝑁)/𝑁𝑠2+2𝑘

𝑔 )1/2 +max𝑔 𝑠
𝑞−𝑘+1
𝑔 ). Thus,

using a common bandwidth 𝑠 that satisfies 𝑠 ∼ (log(𝑁)/𝑁)1/2(𝑞+2) ensures the optimal
convergence rate. Remark 3 discusses a data-driven way of selecting such a bandwidth.

The following theorem shows that �̂�𝑘(𝑥) is asymptotically normally distributed.

Theorem 4.2. Let 𝑘 and 𝑞 be two positive integers, 𝑞 ≥ 𝑘 + 1. Let assumptions 2.1-2.3,
4.1, and C.1 hold. Let assumptions D.1-D.4 in the appendix hold with 𝜏 ≥ 𝑞 + 2. For some
𝛿 > 0 let sup𝑥 E

[︀
𝑢2𝑘+𝛿𝑖𝑡 |𝑋𝑖𝑡 = 𝑥

]︀
, 𝑡 = 1,2. Let 𝑠 → 0, log(𝑁)/𝑁𝑠2+2𝑘 → 0, 𝑁𝑠2𝑞+4 → 0,

𝑠2 log(𝑁) → 0. There exists a positive 𝑉𝑘(𝑥) (characterized in the proof) such that
√
𝑁𝑠2+2𝑘 (�̂�𝑘(𝑥)− 𝜇𝑘(𝑥)) ⇒ 𝑁(0, 𝑉𝑘(𝑥)). (24)

If 𝑥1 ̸= 𝑥2, then
√
𝑁𝑠2+2𝑘 (�̂�𝑘(𝑥1)− 𝜇𝑘(𝑥1)) and

√
𝑁𝑠2+2𝑘 (�̂�𝑘(𝑥2)− 𝜇𝑘(𝑥2)) are asymptoti-

cally independent.
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Theorem 4.2 may be used to conduct inference on 𝜇𝑘(𝑥). In particular, nonparametric
bootstrap offers an attractive option. It requires recomputing �̂�𝑘(𝑥) in each bootstrap sample
by rerunning algorithm 1. Both pointwise and uniform confidence bands may be constructed.
Alternatively, a plug-in estimator for 𝑉𝑘(𝑥) may be used. However, we recommend against
this approach due to its complexity and poor performance; see the remark after the proof of
theorem 4.2.

5 Asymptotic Properties of Estimators for the Distribu-

tion

We now turn to the asymptotic properties of our distribution estimators (18) and (22). We
study two approaches which reflect the interpretations of the estimators discussed in section
3.2. In the first case, the true distribution 𝐹0(𝑣|𝑥) is a finite mixture with nonparametrically
modeled mixture probabilities. In this semi-nonparametric case, section 5.1 establishes a
distribution identification result that is stronger than theorem 2.2 and obtains convergence
rates of the estimators. In the second case, 𝐹0(𝑣|𝑥) belongs to a nonparametric class of
functions, and estimators (18) and (22) may be interpreted as penalized sieve estimators.
Sections 5.2-5.4 establish consistency of the estimators in this nonparametric case.

5.1 Properties in the Semi-nonparametric Case

We first consider the situation in which 𝐹0(𝑣|𝑥) is a finite mixture in 𝑣 for all 𝑥 in the interval
𝐼 = [𝑥𝑙𝑏, 𝑥𝑢𝑏]. Formally, we impose the following assumption:

Assumption 5.1. (i) There exists a finite integer 𝑝𝑣, real numbers 𝑣1,𝑝𝑣 < 𝑣2,𝑝𝑣 < · · · < 𝑣𝑝𝑣 ,𝑝𝑣 ,
and functions 𝜌𝑗(𝑥) : 𝐼 → [0, 1], 𝑗 = 1, . . . , 𝑝𝑣 such that 𝐹0(𝑣|𝑥) =

∑︀𝑝𝑣
𝑗=1 𝜌0,𝑗(𝑥)Ψ(𝑣 − 𝑣𝑗,𝑝𝑣),

𝜌0,𝑗(𝑥) ≥ 0, and
∑︀𝑝𝑣

𝑗=1 𝜌0,𝑗(𝑥) = 1 for all 𝑥 ∈ 𝐼. (ii) 𝜌0,𝑗(𝑥) is twice continuously differentiable
in 𝑥 for 𝑥 ∈ 𝐼. (iii) Ψ(𝑣) is continuously differentiable in 𝑣.

Under assumption 5.1 the true distribution 𝐹0(𝑣|𝑥) is a 𝑝𝑣-component mixture with
centers 𝑣𝑗,𝑝𝑣 and mixing probabilities 𝜌0,𝑗(𝑥). We impose no functional form restrictions on
the mixing probabilities. However, they are required to be twice differentiable in 𝑥. For
simplicity, the centers 𝑣𝑗,𝑝𝑣 are assumed to be known. Such an assumption may be relaxed
at the price of using more moments in identification and estimation. We assume that the
centers 𝑣𝑗,𝑝𝑣 are independent of 𝑥 ∈ 𝐼. This assumption is not restrictive, as the interval 𝐼
may be taken to be arbitrarily short or to be a singleton.
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A finite collection of moments is sufficient to identify 𝐹0(𝑣|𝑥) under assumption 5.1. The
distribution 𝐹0(𝑣|𝑥) is determined by the 𝑝𝑣-vector of mixing probabilities 𝜌0,𝑗(𝑥). As the
following theorem shows, these probabilities are identified for all 𝑥 ∈ 𝐼 using the moments of
orders 1, 2, . . . , 𝑝𝑣 − 1. In turn, these moments are identified if sup𝑥 E[|𝑢𝑖𝑡|

𝑝𝑣−1|𝑋𝑖𝑡 = 𝑥] <∞,
as theorem 2.2 shows. This distribution identification result is stronger than theorem 2.3,
which uses an infinite number of moments to identify the distribution.

Theorem 5.1. Let assumptions 2.1-2.3, 5.1, and C.1 hold. Let sup𝑥 E[|𝑢𝑖𝑡|
𝑝𝑣−1|𝑋𝑖𝑡 = 𝑥] <∞

for 𝑡 = 1, 2. Then the true mixing probabilities (𝜌0,𝑝𝑣(𝑥), . . . , 𝜌0,𝑝𝑣(𝑥)) are identified.

A practical consequence of theorem 5.1 is that the first 𝑝𝑣 − 1 moments are sufficient to
estimate the distribution. We may take 𝐾 equal to 𝑝𝑣 in the objective functions �̃�𝑁(𝛾|𝑥0)
and �̂�𝑁(𝛾) of eqs. (17) and (21). �̃�𝑁(𝛾|𝑥0) and �̂�𝑁(𝛾) are then strictly convex on the
constraint set. Regularization is superfluous, and 𝜆𝑁 and 𝜆𝐼𝑁 can be set to 0, as in section 3.

The following theorem establishes consistency and convergence rates of estimators (18) and
(22) under assumption 5.1. Let �̃�𝑘(𝑥) be some consistent estimators of 𝜇𝑘(𝑥) for 𝑘 ≤ 𝑝𝑣 − 1.
Let 𝑑𝑇𝑉 (𝐹,𝐺) be the total variation distance between two distributions 𝐹 and 𝐺.

Theorem 5.2. Let assumptions 2.1-2.3, 5.1, and C.1 hold. let 𝐾 = 𝑝𝑣 − 1

(1) Let the moment estimators �̃�(𝑥) satisfy |�̃�𝑘(𝑥0)− 𝜇𝑘(𝑥0)| = 𝑂𝑎.𝑠.(𝛿
(𝑥0)
𝑘,𝑁 ), where 𝛿(𝑥0)𝑘,𝑁 is

a deterministic sequence that satisfies 𝛿(𝑥0)𝑘,𝑁 = 𝑜(1). Let 𝜆𝑁 = 0. Then the estimator
𝐹𝑁(·|𝑥0) of eq. (18) satisfies

𝑑𝑇𝑉 (𝐹𝑁(·|𝑥0), 𝐹0(·|𝑥0)) = 𝑂𝑎.𝑠.

(︂
max

𝑘=1,...,𝑝𝑣−1
(𝛿

(𝑥0)
𝑘,𝑁 )1/2

)︂
.

(2) Let the moment estimators �̃�(𝑥) satisfy sup𝑥∈𝐼 |�̃�𝑘(𝑥)− 𝜇𝑘(𝑥)| = 𝑂𝑎.𝑠.(𝛿𝑘,𝑁 ), where 𝛿𝑘,𝑁
is a deterministic sequence that satisfies 𝛿𝑘,𝑁 = 𝑜(1). Let 𝜆𝐼𝑁 = 0 and 𝑝𝑥 = 𝑝𝑥(𝑁) be
a non-decreasing sequence such that 𝑝𝑥 → ∞. Then the estimator 𝐹𝑁(·|·) of eq. (22)
satisfies ∫︁

𝑑𝑇𝑉 (𝐹𝑁(·|𝑥)− 𝐹0(·|𝑥))𝜋(𝑑𝑥) = 𝑂𝑎.𝑠.

(︂
max

{︂
𝑝−1
𝑥 , max

𝑘=1,...,𝑝𝑣−1
𝛿
1/2
𝑘,𝑁

}︂)︂
.

The convergence rates of 𝐹𝑁(·|𝑥0) and 𝐹𝑁(·|·) are driven by the convergence rates of
moment estimators {�̃�(𝑥)}𝑝𝑣−1

𝑘=1 and (for 𝐹𝑁 (·|·)) the order 𝑝𝑥 of the Bernstein approximation.
The moment estimators influence the convergence rates of 𝐹𝑁(·|𝑥0) and 𝐹𝑁(·|·) through

the slowest-converging moment. Typically, this will be the highest-order moment used. A
special case arises if we use the moment estimators of algorithm 1. Suppose that a common
order 𝑞 is used for all the local polynomial estimators, and the optimal bandwidth 𝑠 is used.

22



Then by theorem 4.1 it holds that∫︁
𝑑𝑇𝑉 (𝐹𝑁(·|𝑥)− 𝐹0(·|𝑥))𝜋(𝑑𝑥)

= 𝑂𝑎.𝑠.

(︃
max

{︃
𝑝−1
𝑥 ,

(︂
log(𝑁

𝑁

)︂(𝑞−𝑝𝑣+2)/(4(𝑞+2))
}︃)︃

.

The convergence rate of the interval estimator 𝐹𝑁 is also driven by 𝑝𝑥, the order of
the Bernstein polynomials used to approximate the mixing probabilities {𝜌0,𝑗(𝑥)}𝑝𝑣𝑗=1. 𝑝𝑥

does not enter the “stochastic” component of the convergence rate. To see why, note that
the optimization problem (23) may be intuitively viewed as a two-layer minimal distance
procedure. First, a 𝑝𝑣-vector of mixing probabilities is estimated to best approximate moment
estimates. Second, the coefficients of Bernstein polynomials are picked to approximate
the mixing probabilities from the first step. The distance between 𝐹𝑁 and 𝐹0 is entirely
determined by the distance in the corresponding mixing probabilities, a vector of fixed
dimension. The behavior and the dimension of individual coefficients in �̂� only matters
inasmuch as the estimated mixing probabilities [

∑︀𝑝𝑥
𝑙=0 𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)] approximate the true 𝜌0,𝑗(𝑥).

In light of the above, the only limits on the value of 𝑝𝑥 are practical, as it is theoretically
optimal to set 𝑝𝑥 = ∞. As 𝑝𝑥 grows, the problem becomes higher-dimensional and more
challenging to solve. Further, using large values of 𝑝𝑥 involves using polynomials of high
orders, which may lead to numerical instability.

Remark 8. Theorem 5.2 is also a convergence result for densities, as both the estimators and
𝐹0 are differentiable, and convergence in total variation is tightly linked to 𝐿1 convergence of
corresponding densities as 2𝑑𝑇𝑉 (𝐹,𝐺) =

∫︀
|𝐹 ′(𝑣)−𝐺′(𝑣)|𝑑𝑣.

5.2 Approximating a Nonparametric 𝐹0(𝑣|𝑥)

We now adopt a nonparametric perspective and suppose that assumption 5.1 may fail to hold.
In this case the functions Λ𝑝(𝑣|𝛾) and Λ𝑝𝑣 ,𝑝𝑥(𝑣|𝑥,𝛾) of eqs. (16) and (20) provide flexible
mixture approximations to the unknown true distribution 𝐹0(𝑣|𝑥).

To formalize the approximating properties of Λ𝑝(𝑣|𝛾) and Λ𝑝𝑣 ,𝑝𝑥(𝑣|𝑥,𝛾) and the asymptotic
properties of the estimators of section 3.2, we first impose a smoothness assumption on 𝐹0(𝑣|𝑥)
and define suitable spaces ℱ and ℱ 𝐼 of distribution functions. The following assumption
replaces assumption 5.1, and is considerably weaker than the latter.

Assumption 5.2. (i) ℱ is the space of distribution functions 𝐹 with bounded support; each
𝐹 ∈ ℱ continuously differentiable with a bounded density. (ii) ℱ 𝐼 is the space of bivariate
functions 𝐹 (𝑣|𝑥) on R×𝐼 such that (𝑖) for each 𝑥 ∈ 𝐼 𝐹 (𝑣|𝑥) a cumulative distribution
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function; (𝑖𝑖) 𝐹 (𝑣|𝑥) is continuously differentiable in 𝑣 for each 𝑥 ∈ 𝐼; (𝑖𝑖𝑖) for each 𝑣 the
function 𝐹 (𝑣|𝑥) is twice continuously differentiable in 𝑥; (𝑖𝑣) sup𝑣,𝑥|𝜕𝑣𝐹 (𝑣|𝑥)| <∞; (𝑣) the
support of 𝐹 (𝑣|𝑥) is bounded uniformly in 𝑥. (iii) the true distribution 𝐹0(𝑣|𝑥) lies in ℱ 𝐼

(which implies that 𝐹0(𝑣|𝑥) ∈ ℱ for any 𝑥 ∈ 𝐼).

We first consider the problem of approximating 𝐹0(𝑣|𝑥0) at a given point 𝑥0. The
functions Λ𝑝(𝑣|𝛾) of eq. (16) can approximate any 𝐹 ∈ ℱ arbitrarily well if the corresponding
parameters 𝑝, Ψ and the mixture centers are specified as we presently describe. The reference
distribution function Ψ is assumed to satisfy the following assumption:

Assumption 5.3.
∫︀
Ψ(𝑑𝑡) = 1, Ψ(𝑡) ≥ 0 for all 𝑡, Ψ supported on [−1, 1], Ψ is differentiable

with a symmetric density 𝜓(𝑡).

In order to choose centers, let 𝐶𝑀 be a positive constant. Partition the interval
𝐶𝑀
√︀

log(log(𝑝)) into 𝑝 equal-length closed subintervals. Let 𝑣𝑗,𝑝 be the center of the 𝑗th
interval, numbered from left to right. The constant 𝐶𝑀 may be chosen according to the
method in remark 5 to ensure that the majority of the potential support of 𝐹0(𝑣|𝑥) is covered
by mixture components.

Let ℒ𝑝 be the collection of all functions of the form

ℒ𝑝 =

{︃
Λ𝑝(𝑣|𝛾) =

𝑝∑︁
𝑖=1

𝛾𝑖Ψ
(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝)

)︀
,

𝑝∑︁
𝑖=1

𝛾𝑖 = 1, 𝛾𝑖 ≥ 0

}︃
, (25)

where
𝜎𝑝 =

1

𝑝
√︀
log(log(𝑝))𝑒

√
log(log(𝑝))

. (26)

ℒ𝑝 is the 𝑝th (pointwise) sieve space, and any function 𝐹 ∈ ℱ may be approximated arbitrarily
well as 𝑝→ ∞, as we show in the proof appendix. ℒ𝑝 is a variation of the mixture of experts
sieve (Zeevi and Meir, 1997; Li and Barron, 1999; Norets, 2010).

A similar approach can be taken to approximate 𝐹0(𝑣|𝑥) as 𝑥 varies in 𝐼. Let 𝑝𝑣 be the
number of mixture components. Let the mixture centers 𝑣𝑗,𝑝𝑣 be selected as above with 𝑝𝑣

in place of 𝑝. Let 𝑝𝑥 be the order of the Bernstein polynomials approximating the mixing
probabilities. Define the (𝑝𝑣, 𝑝𝑥)th (interval) sieve space ℒ𝐼𝑝𝑣 ,𝑝𝑥 as

ℒ𝐼𝑝𝑣 ,𝑝𝑥 =

{︃
Λ𝑝𝑣 ,𝑝𝑥(𝑣|𝑥,𝛾) : 𝛾𝑗,𝑙 ≥ 0,

𝑝𝑣∑︁
𝑗=1

𝛾𝑗,𝑙 = 1, 𝑙 = 0, . . . , 𝑝𝑥

}︃
, (27)
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where for 𝜎𝑝 of eq. (26) and Ψ of assumption 5.3 we define

Λ𝑝𝑣 ,𝑝𝑥(𝑣|𝑥,𝛾) =
𝑝𝑣∑︁
𝑗=1

[︃
𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)

]︃
Ψ
(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝𝑣)

)︀
,

𝑏𝑙,𝑝𝑥(𝑥) =

(︂
𝑝𝑥
𝑙

)︂(︂
𝑥− 𝑥𝑙𝑏
𝑥𝑢𝑏 − 𝑥𝑙𝑏

)︂𝑙(︂
𝑥𝑢𝑏 − 𝑥

𝑥𝑢𝑏 − 𝑥𝑙𝑏

)︂𝑝𝑥−𝑙
.

ℒ𝐼𝑝𝑣 ,𝑝𝑥 is a hybrid polynomial-mixture sieve that can approximate 𝐹0(𝑣|𝑥) arbitrary well. The
mixture weights are modeled using Bernstein polynomials on 𝐼, which yields transparent
conditions on the parameters 𝛾 that ensure that every member of ℒ𝐼𝑝𝑣 ,𝑝𝑥 is a valid distribution
function for each value of the conditioning argument.

5.3 Estimation as Approximate Moment Metric Minimization

We now provide the analytical background for the choice of the objective functions (17)
and (21). Functions (17) and (21) approximately measure the distance between the true
distribution and the sieve approximant in terms of their moments, as noted in section 3.2.
In this section, we introduce such moment distances, establish their properties, and connect
them to the estimation problem of section 3.2.

Define the moment 2-metric 𝑑2,𝜇 between two conditional distribution functions 𝐹 (·|𝑥0)
and 𝐺(·|𝑥0) at a fixed point 𝑥0

𝑑2,𝜇(𝐹 (·|𝑥0), 𝐺(·|𝑥0)) =

[︃
∞∑︁
𝑘=1

1

𝑘!

[︂∫︁
𝑡𝑘𝐹 (𝑑𝑣|𝑥0)−

∫︁
𝑡𝑘𝐺(𝑑𝑣|𝑥0)

]︂2]︃1/2
.

In order to measure distances between families of conditional densities 𝐹 (·|𝑥) and 𝐺(·|𝑥)
as 𝑥 varies in the interval 𝐼, we define the integrated moment metric. Let 𝜋 be a finite
measure on 𝐼 such that the Lebesgue measure on 𝐼 is absolutely continuous with respect to
𝜋 and define the integrated metric

𝑑𝜋2,𝜇(𝐹,𝐺) =

∫︁
𝑑2,𝜇(𝐹 (·|𝑥), 𝐺(·|𝑥))𝜋(𝑑𝑥).

The moment metrics 𝑑2,𝜇 and 𝑑𝜋2,𝜇 connect convergence of moments to weak convergence of
distributions, as the following lemma shows.

Lemma 5.3. Let ℱ and ℱ 𝐼 be defined as in assumption 5.2. Then
(1) 𝑑2,𝜇(·, ·) is a metric on ℱ . If 𝐹𝑛, 𝐹 ∈ ℱ , then 𝑑2,𝜇(𝐹𝑛, 𝐹 ) → 0 implies that

sup
𝑣
|𝐹𝑛(𝑣)− 𝐹 (𝑣)| → 0.
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(2) 𝑑𝜋2,𝜇(·, ·) is a metric on ℱ 𝐼 . If 𝐹𝑛, 𝐹 ∈ ℱ 𝐼 , then 𝑑𝜋2,𝜇(𝐹𝑛, 𝐹 ) → 0 implies that∫︁
sup
𝑣
|𝐹𝑛(𝑣|𝑥)− 𝐹 (𝑣|𝑥)|𝜋(𝑑𝑥) → 0.

Lemma 5.3 is the key piece of our estimation strategy. Consider first the problem of
estimating 𝐹0(𝑣|𝑥0) at a fixed point 𝑥0. Since 𝑑2,𝜇 is a metric on ℱ , 𝐹0(𝑣|𝑥0) is the unique
solution of min𝐹∈ℱ 𝑑2,𝜇(𝐹0(·|𝑥0), 𝐹 (·)). This minimization problem is infeasible, since we only
have access to noisy estimates of 𝜇𝑘(𝑥0). Moreover, the estimates of higher-order moments
are dominated by noise. We then replace 𝑑2,𝜇(𝐹0(·|𝑥0), 𝐹 (·)) by a finite-sample version that
uses a finite and growing number of estimated moments �̃�𝑘(𝑥0).

For 𝐹 ∈ ℱ we define

�̃�(𝐹 |𝑥0) =
𝐾−1∑︁
𝑘=1

1

𝑘!

[︂
�̃�𝑘(𝑥0)−

∫︁
𝑡𝑘𝐹 (𝑑𝑣)

]︂2
, (28)

where �̃�𝑘(𝑥0) is some estimator of 𝜇𝑘(𝑥0). The definition in eq. (28) agrees with that of eq.
(17) for all 𝐹 ∈ ℒ𝑝. Additionally, we define the population counterpart of �̃�𝑁(𝐹 |𝑥0) as

𝑄(𝐹 |𝑥0) =
∞∑︁
𝑘=1

1

𝑘!

[︂
𝜇𝑘(𝑥0)−

∫︁
𝑡𝑘𝐹 (𝑑𝑣)

]︂2
≡ (𝑑2,𝜇(𝐹0(·|𝑥0), 𝐹 (·)))2. (29)

Minimizing �̃�𝑁 (𝐹 |𝑥0) over ℒ𝑝 approximates minimizing the distance 𝑑2,𝜇 to the target cdf
𝐹0(·|𝑥0) over ℱ . The approximation becomes exact as the moment estimators converge to the
true moments, the number of moments used 𝐾 grows, and the sieve space size 𝑝 increases.

To estimate 𝐹0(𝑣|𝑥) as 𝑥 varies in 𝐼, we proceed similarly. We define for 𝐹 ∈ ℱ 𝐼

�̂�𝑁(𝐹 ) =

∫︁
𝐼

𝐾−1∑︁
𝑘=1

1

𝑘!

[︂
�̃�𝑘(𝑥)−

∫︁
𝑡𝑘𝐹 (𝑑𝑣|𝑥)

]︂2
𝜋(𝑑𝑥) (30)

𝑄(𝐹 ) =

∫︁
𝐼

∞∑︁
𝑘=1

1

𝑘!

[︂
𝜇𝑘(𝑥)−

∫︁
𝑡𝑘𝐹 (𝑑𝑣|𝑥)

]︂2
𝜋(𝑑𝑥) (31)

where �̃�𝑘(𝑥) is an estimator of 𝜇𝑘(𝑥), and 𝜋 is a finite measure on 𝐼 such that the Lebesgue
measure is absolutely continuous with respect to 𝜋.

As above, the problem of minimizing �̂�𝑁(𝐹 ) is approximately equivalent to minimizing
the distance 𝑑𝜋2,𝜇(𝐹 (·|·), 𝐹0(·|·)), though the argument is somewhat more complex than
in the case of 𝐹0(𝑣|𝑥0). First, minimizing �̂�𝑁 over ℒ𝐼𝑝𝑣 ,𝑝𝑥 approximately corresponds to
minimizing 𝑄 over ℱ 𝐼 . Second, minℱ𝐼 𝑄(𝐹 ) is equal to 0, and it is uniquely attained at
𝐹 = 𝐹0(𝑣|𝑥).5 Last, by Jensen’s inequality the function 𝑄 upper bounds the integral metric

5To see this, let 𝑄(𝐹 ) = 0. Then 𝑑2,𝜇(𝐹 (·|𝑥), 𝐹0(·|𝑥)) = 0 for 𝜋-almost all 𝑥, and thus for Lebesgue-almost
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as [𝑑𝜋2,𝜇(𝐹, 𝐹0)]
2 ≤

∫︀
𝑑22,𝜇(𝐹 (·|𝑥), 𝐹0(·|𝑥))𝜋(𝑑𝑥) ≡ 𝑄(𝐹 ).

5.4 Consistency of Nonparametric Distribution Estimators

Before stating a consistency results for estimators (18) and (22), we impose a technical condi-
tion on the moment estimators �̃�𝑘(𝑥). Let {�̂�𝑘(𝑥)}∞𝑘=1 be some sequence of estimators 𝜇𝑘(𝑥), as-
sumed consistent in the sense that sup𝑥∈𝐼 |�̂�𝑘(𝑥)− 𝜇𝑘(𝑥)| = 𝑂𝑎.𝑠.(𝛿𝑘,𝑁 ) for some deterministic
𝛿𝑘,𝑁 = 𝑜(1). Define the moment estimators �̃�𝑘(𝑥) = max{min{�̂�𝑘(𝑥), 𝐶𝑘

𝜇(𝑘!)
1/4},−𝐶𝑘

𝜇(𝑘!)
1/4}

where 𝐶𝜇 > 0 is constant such that �̃�𝑘(𝑥) remains consistent in the sense that

sup
𝑥∈𝐼

|�̃�𝑘(𝑥)− 𝜇𝑘(𝑥)| = 𝑂𝑎.𝑠.(𝛿𝑘,𝑁). (32)

Two remarks are in order. First, a suitable 𝐶𝜇 always exists under assumption 5.2. The
support of 𝐹0(𝑣|𝑥) is bounded uniformly in 𝑥, and thus the moments 𝜇𝑘(𝑥) may grow at most
exponentially in 𝑘. Second, the trimmed nature of �̃�𝑘(𝑥) is a purely technical assumption.
𝐶𝜇 may be taken arbitrarily large, ensuring that �̃�𝑘(𝑥) = �̂�𝑘(𝑥) for any finite collection of 𝑘.

We now state a consistency result for estimators (18) and (22).

Theorem 5.4. Let assumptions 2.1-2.3, 4.1, 5.2-5.3, and C.1 hold. Let the moment estima-
tors �̃�𝑘(𝑥) satisfy (32). Let 𝐾=𝐾(𝑁) be a non-decreasing sequence such that 𝐾 → ∞.
(1) Let 𝑝=𝑝(𝑁) satisfy 𝑝→ ∞, log(𝑝) = 𝑜(

√
𝐾) and log(𝑝) = 𝑜(𝛿

1/𝑘
𝑘,𝑁 ) for all 𝑘 = 1, 2, . . . for

𝛿𝑘,𝑁 of (32). Let 𝜆𝑁 → 0. Then the estimator 𝐹𝑁(·|𝑥0) of eq. (18) satisfies

sup
𝑣∈R

⃒⃒⃒
𝐹𝑁(𝑣|𝑥0)− 𝐹0(𝑣|𝑥0)

⃒⃒⃒
𝑎.𝑠.−−→ 0.

(2) Let 𝑝𝑣=𝑝𝑣(𝑁) satisfy 𝑝𝑣 → ∞, log(𝑝𝑣) = 𝑜(
√
𝐾) and log(𝑝𝑣) = 𝑜(𝛿

1/𝑘
𝑘,𝑁 ) for all 𝑘 = 1, 2, . . .

for 𝛿𝑘,𝑁 of (32). Let 𝑝𝑥 = 𝑝𝑥(𝑁) satisfy 𝑝𝑥 → ∞. Let 𝜆𝐼𝑁 = 𝑜(𝑝−1
𝑥 ). Then the estimator

𝐹𝑁(·|·) of eq. (22) satisfies∫︁
𝐼

sup
𝑣∈R

⃒⃒⃒
𝐹𝑁(𝑣|𝑥)− 𝐹0(𝑣|𝑥)

⃒⃒⃒
𝜋(𝑑𝑥)

𝑎.𝑠.−−→ 0.

Theorem 5.4 characterizes the nature of consistency of estimators (18) and (22). The
estimated cdfs converge uniformly to the true cdf of interest, in line with lemma 5.3. In the
case of estimation at one point 𝑥0, 𝐹𝑁(·|𝑥0) simply converges uniformly to 𝐹0(·|𝑥0). In the
interval case, the estimated family 𝐹𝑁 (·|𝑥) (indexed by 𝑥) converges in a 𝐿1-𝐿∞ hybrid mode.

Conditions of theorem 5.4 can be broadly split into three groups standard in penalized sieve
estimation literature (e.g. Chen and Pouzo (2012)). The first group deals with the complexity

all 𝑥 (by the absolute continuity requirement). 𝑑2,𝜇(𝐹 (·|𝑥), 𝐹0(·|𝑥)) is a continuous function of 𝑥 by definition
of ℱ𝐼 . We conclude that 𝑑2,𝜇(𝐹 (·|𝑥), 𝐹0(·|𝑥)) = 0 for all 𝑥 ∈ 𝐼. By lemma 5.3 we conclude that 𝐹 = 𝐹0.
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of sieve spaces. As 𝑝→ ∞ or 𝑝𝑣, 𝑝𝑥 → ∞, the sieve spaces are able to approximate 𝐹0(𝑣|𝑥)
arbitrary well. The sample optimization problem can return a solution that is arbitrarily
close to 𝐹0(𝑣|𝑥). The second group concerns the conditions on the penalty imposed on the
sample problems (19) and (23). In the case of estimation at one point, the nature of the
sieve spaces limits the magnitude of the penalty as

∑︀𝑝
𝑗=1 𝛾

2
𝑗 ≤ 1 uniformly; in this case it is

sufficient for 𝜆𝑁 → 0 to avoid regularization bias in the limit. In the interval case, a rate
condition on 𝜆𝐼𝑁 is necessary to ensure that the penalty is asymptotically negligible. The
third and most complex group deals with convergence of the sample functions �̃�𝑁 and �̂�𝑁 to
the corresponding population functions 𝑄. This group links together the convergence rates
𝛿𝑘,𝑁 of the moments, 𝐾, and the mixture sizes 𝑝 and 𝑝𝑣. As 𝐾 increases without bound,
the truncation error in �̂� incurred by using only a finite number of moment decreases. At
the same time, the mixtures cannot expand too quickly relative to both the number 𝐾 of
moments used and the convergence rate of the moments. The relevant conditions are stated
in a high-level form, and they can be specialized given a particular form of 𝛿𝑘,𝑁 . For example,
if the moment estimators of section 3.1 are used, 𝑝 and 𝑝𝑣 may be taken polynomial in 𝑁 ,
and 𝐾 may be taken polynomial or logarithmic in 𝑁 . In contrast, there is no restriction on
the order 𝑝𝑥 of Bernstein polynomials, as in the semi-nonparametric case (see theorem 5.2).

6 Monte Carlo

In this section, we assess the finite sample performance of our moment and distribution
estimators with a Monte Carlo study. The data is generated as follows:

𝑌𝑖𝑡 = 𝑚(𝑋𝑖𝑡, 𝛼𝑖) + 𝑢𝑖𝑡, 𝑖 = 1, . . . , 𝑁, 𝑇 = 1, 2, (33)

𝑚(𝑥, 𝛼𝑖) = 𝛼
(1)
𝑖

(︁
0.75𝑥(𝛼

(2)
𝑖 −1)/𝛼

(2)
𝑖 + 0.25(24− 𝑥)(𝛼

(2)
𝑖 −1)/𝛼

(2)
𝑖

)︁𝛼(2)
𝑖 /(𝛼

(2)
𝑖 −1)

,

where 𝑋𝑖1 is uniformly distributed on [0, 6]; 𝑋𝑖2 = min{max{𝑋𝑖1 + 𝜉𝑖𝑡, 0}, 6}, 𝜉𝑖𝑡 is Beta(2,
2)-distributed on [−𝜎𝑥, 𝜎𝑥] for 𝜎𝑥 = 1 (picked to approximately reproduce the share of
near-stayers in the empirical application of section 7). The shock 𝑢𝑖𝑡 satisfies 𝑢𝑖𝑡|(𝑋𝑖1, 𝑋𝑖2) ∼
𝑁(0, 𝜎2

𝑢); 𝜎2
𝑢 chosen to match the average (across 𝑥) variance of marginal effects at 𝑥. The

time-invariant vector (𝛼
(1)
𝑖 , 𝛼

(2)
𝑖 ) is drawn is follows; 𝛼(1)

𝑖 |(𝑋𝑖1, 𝑋𝑖2) = (𝑥1, 𝑥2) is Beta(2, 2)-
distributed on [0.5, 1.5], 𝛼(2)

𝑖 |(𝑋𝑖1, 𝑋𝑖2) = (𝑥1, 𝑥2) is Beta(3− 𝑥1/3, 1 + 𝑥1/3)-distributed on
the interval [0.5, 1.5]; 𝛼(1)

𝑖 and 𝛼
(2)
𝑖 independent conditional on (𝑋𝑖1, 𝑋𝑖2). The number of

cross-sectional units 𝑁 is taken as 7500 (approximately 50% of the cross-sectional dimension
of the dataset of section 7) and 𝑇 = 2. Cross-sectional units are iid. We draw 1000 datasets.

Specification (33) may be interpreted as a constant elasticity of substitution function with
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Figure 1: Simulation results for estimators of moments 𝜇𝑘(𝑥) of marginal effects, 𝑘 = 1, 2, 3, 4. Solid line –
average of estimates across Monte Carlo sample; dashed line – true population moments; shaded area – 95%
Monte Carlo bands

unit-specific scale 𝛼(1)
𝑖 and elasticity of substitution 𝛼(2)

𝑖 . The support of 𝛼(2)
𝑖 includes 1; this

value corresponds to a Cobb-Douglas form in eq. (33). 𝛼(2)
𝑖 is more likely to lie below 1 for

lower values of 𝑥; 𝑚 is closer to a Leontief function for such draws of 𝛼(2)
𝑖 . 𝛼(2)

𝑖 is more likely
to lie above 1 for higher values of 𝑥; 𝑚 is closer to a linear function for such values of 𝛼(2)

𝑖 .
We estimate the moments 𝜇𝑘(𝑥), the distribution of marginal effects using the estimators

of section 3. To estimate 𝜇𝑘(𝑥), we estimate the first stage conditional moments and their
derivatives using an local polynomial estimator of order 𝑘 + 1. The common smoothing
bandwidth 𝑠 is taken to be 1.2. It is selected by applying the multivariate generalized 𝐶𝑝

criterion of Charnigo and Srinivasan (2015) for first derivatives (see remark 3). We use a
2-dimensional product Epanechnikov kernel. We report estimates for the first 4 moments in
this section. Negative estimates of even-order moments are replaced by zeros. To estimate
the distribution, we fit mixtures of 3-8 components using 3-8 moments (including the zeroth
moment). The locations of the mixture are located symmetrically around the estimated
mean using Chebyshev’s inequality (see remark 5). The reference cdf Ψ is a unit-variance
Epanechnikov cdf. We only report the results for the pointwise estimator in this section,
as the estimates are virtually indistinguishable from those of the interval estimator. If the
number of components exceeds the number of moments, we include the penalty term in eq.
(19) with 𝜆𝑁 = 10−3. Some further results may be found in the Supplementary Appendix.

Simulation results for moments are graphically represented on figs. 1-2. We report the
results for the the raw moments 𝜇𝑘(𝑥) and the variance (𝜇2(𝑥)− 𝜇2

1(𝑥)) of marginal effects.
For each moment, we plot the average of the Monte Carlo samples and 95% Monte Carlo
bands, as well as the target population moments.

The moment estimators for 𝜇𝑘(𝑥) generally perform well in terms of bias and variance. The
bias is generally low and the estimators track the shape of 𝜇𝑘(𝑥) well. Estimator variability
is generally limited for the moments under consideration, though the Monte Carlo bands
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Figure 2: Simulation results for estimator of variance of marginal effects. Solid line – average of estimates
across Monte Carlo sample; dashed line – true population moments; shaded area – 95% Monte Carlo bands

become larger relative to the estimand for 𝜇4(𝑥), in line with theorem 4.1. Estimation is
more challenging closer to the boundaries of the support of 𝑋.

We now turn to the results for the distribution estimators. The top panel of fig. 3 shows
the average five component mixture density fitted with the first five moments, starting from
the zeroth moment (𝐾 = 𝑝 = 5 in eq. (17)), averaged across Monte Carlo samples. The
density is obtained by differentiating the cdf estimators. The shape is contrasted with the true
distribution, reported on fig. 3 as a transparent net. For clarity, we also plot the contours of
the difference between the two on the bottom panel fig. 3. Contours of the true distribution
and of different estimator specifications are depicted on fig. 5.

Overall, the bias-variance properties of the distribution estimators reflect those of �̂�𝑘(𝑥).
Consider bias first. The estimates generally track the shape of the distribution well, including
tail behavior and the asymmetry for lower values of 𝑥. To measure variance, we report 95%
Monte Carlo bands for the distribution on fig. 4, splitting the plot at 𝑥 = 3 to reveal the
lower band. The peaks of the estimates are somewhat more variable in the regions where the
variance of marginal effects is smaller, such as for 𝑥 around 6 (compare fig. 2). Near-zero
estimates of variance lead to very tightly concentrated distribution estimates.

The distribution estimates are fairly insensitive to the number of components and the
number of moments used in estimation. On fig. 5 we report contours for different combinations
of the number of components 𝑝 and the number of moments 𝐾, as well as the contours of
the true density. Overall, all 3-6 component mixtures using 3-6 moments approximate the
distribution well. Increasing the number of components and moments beyond that allows the
model to better approximate features such as the peak of the true distribution, at the price
of somewhat overestimating the left tail and greater variability.

Finally, we note that the Supplementary Appendix contains the results for two further
simulations: a simulation that recreates several key features of the empirical application of
section 7, and specification (33) with 𝑁 = 15000. The results of these additional simulation
studies support the results presented in this section.
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contour lines of averages of estimates across Monte Carlo samples. Top right panel – contours of true density.
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7 Empirical Application

In this section we apply our methodology to Engel curves for food at home. Specifically, we
consider the first four moments and the distribution of the slopes of individual Engel curves
while allowing for unrestricted variation in individual preferences. Demand analysis is a
natural domain of application of our methods, as preferences over consumption are typically
multidimensional and potentially related in a complex manner with determinants of demand
(McFadden, 2005; Browning and Carro, 2007). The particular relevance of the Engel curve
slope is that it captures information about the income effect. As Banks et al. (1997) note,
fully estimating the distribution of the income effect at all points of the income distribution
is key for predicting responses to tax reforms. Further, Engel curves for food at home may
be used to establish purchasing-parity conversions (Almås, 2012).

Data and model The data on household expenditures on food at home and total ex-
penditures is drawn from the 2011-2019 waves of the US Consumer Expenditure Survey
(CES). The CES is a quarterly rotating panel dataset: each household is surveyed in up to 4
consecutive quarters before being replaced by a new household in the sample. To obtain a
demographically homogeneous sample, we only retain the households formed by married or
cohabitating couple with no children where the head of the household is between 20 and 65
years. This selection matches the demographics considered by Imbens and Newey (2009);
Chen and Pouzo (2012) and Chernozhukov et al. (2015). The resulting sample contains 8132
individual households that participated in the survey at least twice. To account for price
changes between 2011 and 2019, we deflate the expenditures to the level of the first quarter
of 2011 by the consumer price index. We transform the dataset into a balanced panel of
length 𝑇 = 2 by treating each pair of consecutive quarters for every household as a new
separate observation. The resulting dataset has 15231 cross-sectional observations. A formal
description of the procedure is available in the Supplementary Appendix. Let 𝑖 index the
new resulting cross-section.

Let 𝑌𝑖𝑡 be the share of food at home in total expenditure in period 𝑡 where 𝑡 = 1, 2. We
assume that 𝑌𝑖𝑡 satisfies model (2) as

𝑌𝑖𝑡 = 𝑚(𝑋𝑖𝑡, 𝛼𝑖) + 𝑢𝑖𝑡.

Here 𝑋𝑖𝑡 is the deflated log total expenditure and 𝛼𝑖 plays the role of time-invariant preferences.
The function 𝑚(𝑋𝑖𝑡, 𝛼𝑖) is the Engel curve. This model allows for a complex relationship
between expenditures and preferences. Last, 𝑢𝑖𝑡 reflects idiosyncratic shocks to consumption.
We assume that E [𝑢𝑖𝑡|𝑋𝑖𝑡] = 0, this assumption is found to hold for food at home by
Chernozhukov et al. (2015) in their analysis of average marginal effects.
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Summary statistics, prevalence of (near-)stayers Some summary statistics of the
data are presented on fig. 6. On the left panel, we plot a kernel estimate of the log
expenditure in the first and the second periods; all kernel estimates use a normal kernel with
the bandwidths selected by Silverman’s rule of thumbs. The two distributions are virtually
indistinguishable. Quarterly expenditure ranges from approximately $400 to $100000 2011
dollars (as log expenditure ranges from 6 to 11). The middle panel depicts a kernel estimate
of the density of changes in log expenditure. There is a high density of households with
small changes in expenditure. In other words, the population discussed in this paper —
the near-stayers and the stayers — comprises a large part of the population represented in
the data. This allows us to construct meaningful estimates for the objects of interest, as
near-stayers serve as the basis of identification and estimation for the stayers. Last, on the
right panel we plot a kernel estimate of the joint density of log expenditure and share of
food at home in expenditure. Engel’s law holds in our data – the estimates show a negative
correlation between expenditure and the share going on food at home.
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Figure 6: Summary of distributional features of log expenditure and share of food at home in expenditure.
Left panel: kernel estimate of density of log expenditure in the first and second periods. Middle panel:
kernel estimate of density of changes in log expenditure. Right panel: kernel estimate of joint density of log
expenditure and shares. Note: values of joint density normalized to lie in the interval [0, 1] for clarity.

Methodology The moments 𝜇𝑘(𝑥) and the distribution of the Engel curve slope are
estimated using the estimators of section 3 similarly to in section 6, to which we refer
for a discussion. There are two differences relative to section 6. First, we report 95%
pointwise confidence bands around the estimates using nonparametric bootstrap with 1000
bootstrap samples. Second, for purposes of inference, we undersmooth the moment estimators.
Specifically, the C𝑝 criterion of Charnigo and Srinivasan (2015) suggests taking the smoothing
bandwidth 𝑠 equal to 1.15. We reduce the value to 1 to ensure that the confidence intervals
are centered at 𝜇𝑘(𝑥) by theorem 4.2.
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Results: mean and standard deviation We first consider the mean and the standard
deviation of the Engel curve slope. Our estimates are depicted on fig. 7. For interpretability,
we report the 𝑥-axis in dollars. The estimated mean is negative for all expenditure values,
indicating a downward-sloping average Engel curve. Overall, the results for the mean are
consistent both with our estimates of the average Engel curve (𝜈𝑚(𝑥), fig. 8) and the estimates
of the (average) Engel curve by Blundell et al. (2007b).
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Figure 7: Mean and standard deviation of Engel curve slope (𝜇1(𝑥) and [𝜇2(𝑥) − 𝜇2
1(𝑥)]

1/2) for food at
home and 95% bootstrap pointwise confidence band. Moments estimated using log expenditure (log dollars);
results reported in expenditure (dollars)
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Figure 8: Average Engel curve (𝜈𝑚(𝑥)) for food at home and 95% bootstrap pointwise confidence band.
Moments estimated using log expenditure (log dollars); results reported in expenditure (dollars)

Turning to the standard deviation, we reject slope homogeneity for expenditures below
$14000. Furthermore, in this region, the estimated standard deviation is similar in magnitude
to the mean. This suggests that a fraction of the stayers at each point 𝑥 have a positive Engel
curve slope — some individual Engel curves are upward sloping at that point 𝑥 (though not
necessarily upward-sloping for expenditures higher or lower than 𝑥). In contrast, we do not
reject homogeneity of the marginal effect for expenditures above $14000.

Results: skewness and kurtosis We present estimates of the skewness and kurtosis of
the Engel curve slope on figure 9. Results are plotted for expenditures for which the variance
of slope is significantly different from 0. First, out estimates are consistent with a light-tailed
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symmetric distribution for all expenditure values. Second, the estimates are more precise
for expenditures below $8000, and we split the results accordingly. This effect is driven by
dividing by progressively smaller values of standard deviation as expenditure increases.
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Figure 9: Skewness and excess kurtosis of Engel curve slope for stayers for food at home and 95% bootstrap
pointwise confidence band. Note: moments estimated using log expenditure (log dollars); results reported in
expenditure (dollars)

Distribution We now turn towards the distribution of the individual Engel curve slopes.
On fig. 10 we plot a five component mixture fitted using the first five moments, starting from
the zeroth moment (below we discuss robustness of the estimates). We also report 95% bands
obtained by recomputing the distribution in every bootstrap sample and taking suitable
quantiles of the bootstrap estimates at each value of 𝑣 and expenditure. The estimated
distribution reflects the properties implied by the moment estimates. The distribution is
symmetric and centered around a negative value. Its variance decreases with expenditure.
The estimates are more precise for expenditures below $8000, as for skewness and kurtosis.

A non-zero fraction of households has upward-sloping sections in their Engel curve for
food at home. This fraction is approximately 35% for lowest expenditure values, and drops
as expenditure rises. It is not significantly different from 0% for expenditure values above
$14000. These distributional results imply that Engel’s law does not necessarily hold at the
household level, although it holds on average (figs. 7-8). The share of food at home may
be increasing for some range of expenditures before decreasing for larger expenditure. We
conjecture that this results may be driven by a combination of financial constraints and
households prioritizing basic needs as their expenditures expand.

Distribution robustness The estimates of the distribution are robust with respect to both
the number of components and the number of moments used, as was the case in our Monte
Carlo study. We plot contours of the estimates for some combinations of these parameters
on fig. 12. The resulting estimates are stable overall. The density displays some minor
differences in shape and in the extent of the tails when using three or four components when
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compared to the case of using 5 components or more
Finally, we remark that the Supplementary Appendix contains a number of further results.

In it, we first report estimation results for higher-order moments and moments of 𝑚 and
𝑢. Second, we provide the results of applying the interval distribution estimator. Last, we
provide estimates for all combinations of 𝐾 and 𝑝 considered. The evidence emerging from
these additional results is consistent with the evidence reported here.
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Figure 12: Sensitivity of estimated distribution of Engel curve slope to number of moments (𝐾) and number
of mixture components (𝑝) used in estimation. Note: values of density normalized to lie in the interval [0, 1]
for clarity. Results estimated using log expenditure (log dollars), but reported in expenditure (dollars)
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Appendix I: Implementation

A Implementation of Moment Estimators

In this section we discuss some further implementation details of the moment estimator �̂�𝑘(𝑥)
of section 3.1 in the main text. Section A.1 discusses a convenient parametrization of the
first-step local polynomial (LP) regressions that estimate moments of (𝑌𝑖1, 𝑌𝑖2) and their
derivatives. In section A.2 we further show how to exploit the linearity of the LP estimators
to run at most 3 LP regressions regardless of the order of the moment of interest. Finally,
in section A.3 we discuss how the moment expressions simplify if the distribution of 𝑢𝑡 is
invariant over time.

A.1 Simple Parametrization for Local Polynomial Estimators

Step 1 of algorithm 1 requires computing local polynomial estimators for 𝜕𝑙ℎ𝑟𝑔(𝑥−ℎ, 𝑥+ℎ)|ℎ=0

and 𝜕𝑙ℎ𝑟𝑔(𝑥± ℎ, 𝑥± ℎ)|ℎ=0 for 𝑙 = 0, 1, . . . , 𝐾 and 𝑔 ∈ 𝒢𝐾 where

𝒢𝐾 = {(𝑦2 − 𝑦1)
𝑗, 𝑦𝑗−1

1 (𝑦1 − 𝑦2), 𝑦
𝑗−1
2 (𝑦2 − 𝑦1), 𝑦

𝑗−1
1 𝑦2, 𝑗 ∈ 1, 2, . . . , 𝐾}.

In this section we provide convenient formulas for these estimators.
Directly regressing 𝑔(𝑌𝑖1, 𝑌𝑖2) on (𝑋𝑖1, 𝑋𝑖2) is somewhat inconvenient for estimating the

derivatives with respect to ℎ. In principle, the derivatives of the form 𝜕𝑙ℎ𝑟𝑔(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0

and 𝜕𝑙ℎ𝑟𝑔(𝑥 ± ℎ, 𝑥 ± ℎ)ℎ=0 can be obtained from the partial derivatives of 𝑟𝑔(𝑥1, 𝑥2) with
respect to 𝑥1 and 𝑥2 evaluated at (𝑥1, 𝑥2) = (𝑥, 𝑥). However, the relationship between the
two is given by Faà di Bruno’s formula, which may be cumbersome to evaluate for 𝑙 ≥ 3.

To resolve the above issue, we propose an alternative equivalent parametrization of the
regressions. This approach obviates the need for combining estimated partial derivatives
according to Faà di Bruno’s formula, and may be used easily in any statistical software
capable of running local polynomial (LP) regressions.

Consider 𝑟𝑔(𝑥 − ℎ, 𝑥 + ℎ) ≡ E [𝑔(𝑌𝑖1, 𝑌𝑖2)|𝑋𝑖1 = 𝑥− ℎ,𝑋𝑖2 = 𝑥+ ℎ]. Define the new
variables 𝑊 (Δ)

𝑖1 = (𝑋𝑖1 +𝑋𝑖2)/2 and 𝑊 (Δ)
𝑖2 = (𝑋𝑖2 −𝑋𝑖1)/2, and define

𝑅(Δ)
𝑔 (𝑤1, 𝑤2) = E

[︁
𝑔(𝑌𝑖1, 𝑌𝑖2)|𝑊 (Δ)

𝑖1 = 𝑤1,𝑊
(Δ)
𝑖2 = 𝑤2

]︁
.

Then
𝑟𝑔(𝑥− ℎ, 𝑥+ ℎ) = 𝑅(Δ)

𝑔 (0, 𝑥+ ℎ).
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Thus, the derivative of interest can be expressed as

𝜕𝑙ℎ𝑟𝑔(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0 = 𝜕𝑙𝑤2
𝑅

(Δ)
ℎ (𝑤1, 𝑤2)|(𝑤1,𝑤2)=(0,𝑥).

To estimate the derivative on the right, we regress 𝑔(𝑌𝑖1, 𝑌𝑖2) on (𝑊
(Δ)
𝑖1 ,𝑊

(Δ)
𝑖2 ) with local poly-

nomial regression around (𝑤1, 𝑤2) = (0, 𝑥). Then an estimator for 𝜕𝑙𝑤2
𝑅

(Δ)
ℎ (𝑤1, 𝑤2)|(𝑤1,𝑤2)=(0,𝑥)

can be directly obtained from the coefficient on (𝑊
(Δ)
𝑖2 )𝑙 in a standard manner.

Specifically, let 𝑞 be a positive integer, 𝑞 > 𝑙. Let the (𝑞 + 1)(𝑞 + 2)/2 vector 𝑊
(Δ)
𝑖

have the (𝑝(𝑝 + 1)/2 + 𝑗 + 1)th element (𝑊
(Δ)
𝑖1 )𝑝−𝑗(𝑊

(Δ)
𝑖2 )𝑗, where 𝑗 ∈ {0, 1, 2, . . . , 𝑝} and

𝑝 ∈ {0, 1, 2, . . . , 𝑞}, and let the 𝑁 × (𝑞 + 1)(𝑞 + 2)/2 matrix 𝑊 (Δ) have the 𝑖th row 𝑊
(Δ)
𝑖 ,

that is,

𝑊
(Δ)
𝑖 =

(︁
1 𝑊

(Δ)
𝑖1 ,𝑊

(Δ)
𝑖2 ,

(︁
𝑊

(Δ)
𝑖1

)︁2
,𝑊

(Δ)
𝑖1 𝑊

(Δ)
𝑖2 ,

(︁
𝑊

(Δ)
𝑖2

)︁2
,
(︁
𝑊

(Δ)
𝑖1

)︁3
, . . . ,

(︁
𝑊

(Δ)
𝑖2

)︁𝑞)︁
,

𝑊 (Δ) =
(︁
𝑊

(Δ)′

1 ,𝑊
(Δ)′

2 , . . . ,𝑊
(Δ)′

𝑁

)︁′
.

Let 𝜓𝐿𝑃 be a kernel that satisfies assumption 4.1 and let 𝑠 be a positive number. Then let Ψ
be the 𝑁 ×𝑁 diagonal matrix with (𝑖, 𝑖)th element given by 𝑠−2𝜓𝐿𝑃 (𝑊

(Δ)
𝑖1 /𝑠, (𝑊

(Δ)
𝑖2 − 𝑥)/𝑠).

In addition, let 𝑔(𝑌 ) be the 𝑁 × 1 vector with 𝑖th element given by 𝑔(𝑌𝑖1, 𝑌𝑖2). The LP(𝑞)
coefficient vector 𝛽𝑔 of regressing 𝑔(𝑌𝑖1, 𝑌𝑖2) on (𝑊

(Δ)
𝑖1 ,𝑊

(Δ)
𝑖2 ) is defined as

𝛽𝑔 =
(︁
𝑊 (Δ)′Ψ𝑊 (Δ)

)︁−1

𝑊 (Δ)′Ψ𝑔(𝑌 ). (34)

The LP(𝑞) estimator for 𝜕𝑙𝑤2
𝑅

(Δ)
ℎ (𝑤1, 𝑤2)|(𝑤1,𝑤2)=(0,𝑥) is then given by

𝜕𝑙𝑤2
𝑅

(Δ)
ℎ (𝑤1, 𝑤2)|(𝑤1,𝑤2)=(0,𝑥)

⋀︀

= 𝑙!
(︁
𝛽𝑔

)︁
(𝑙+1)(𝑙+2)/2

, (35)

where (𝛽𝑔)𝑗 stands for the 𝑗th element of 𝛽𝑔.
The argument is analogous for 𝑟𝑔(𝑥 ± ℎ, 𝑥 ± ℎ). Define the new variables 𝑊 (±)

𝑖1 =

(𝑋𝑖2 −𝑋𝑖1)/2 and 𝑊 (±)
𝑖2 = ±(𝑋𝑖1 +𝑋𝑖2)/2. Define

𝑅(±)
𝑔 (𝑤1, 𝑤2) = E

[︁
𝑔(𝑌𝑖1, 𝑌𝑖2)|𝑊 (±)

𝑖1 = 𝑤1,𝑊
(±)
𝑖2 = 𝑤2

]︁
.

Then
𝑟𝑔(𝑥± ℎ, 𝑥± ℎ) = 𝑅(±)

𝑔 (0,±𝑥+ ℎ).

Thus,
𝜕𝑙ℎ𝑟𝑔(𝑥± ℎ, 𝑥± ℎ)|ℎ=0 = 𝜕𝑙𝑤2

𝑅(±)
𝑔 (𝑤1, 𝑤2)|(𝑤1,𝑤2)=(0,±𝑥).

As above, the derivative of interest is estimated by the coefficient on (𝑊
(±)
𝑖2 )𝑙 in the local
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polynomial regression of 𝑔(𝑌𝑖1, 𝑌𝑖2) on (𝑊
(±)
𝑖1 ,𝑊

(±)
𝑖2 ) around (0,±𝑥), similarly to eq. (35).

A.2 Using Linearity of the LP(𝑞) Estimator

An additional computational simplification is made possible by the linearity of the LP(𝑞)
estimator. Let 𝜕𝑙ℎ𝑟𝑔(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0

⋀︀

be the estimator for 𝜕𝑙ℎ𝑟𝑔(𝑥− ℎ, 𝑥+ ℎ) constructed as
above. As the LP(𝑞) estimator is linear, it it possible to represent 𝜕𝑙ℎ𝑟𝑔(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0

⋀︀

as

𝜕𝑙ℎ𝑟𝑔(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0

⋀︀

=
𝑁∑︁
𝑖=1

W𝑖(𝑥)𝑔(𝑌𝑖1, 𝑌𝑖,2), (36)

where the weights W𝑖,𝑁 do not depend on 𝑔 or (𝑌𝑖1, 𝑌𝑖2). The weights W𝑖𝑁(𝑥) for all
𝑙 = 0, 1, . . . , 𝐾 are determined by a single matrix inversion as in eq. (34).

The estimators 𝜕𝑙ℎ𝑟𝑔(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0

⋀︀

may then be rapidly computed using eq. (36) for
all 𝑔 ∈ 𝒢𝐾 once the W𝑖(𝑥) are determined. In other words, only a single evaluation of
weights is required. The same point applies to constructing estimators of 𝜕𝑙ℎ𝑟𝑔(𝑥± ℎ, 𝑥± ℎ).
We conclude that overall all the required estimators can be computed using a total of 3
applications of LP(𝑞).

A.3 Exploiting Stationarity of 𝑢𝑖𝑡

If 𝑢𝑖𝑡 is stationary, the expressions for moments of 𝑢𝑖1 and 𝑢𝑖2 of alg. 1 simplify. Let 𝜈𝑢𝑘(𝑥) be
the (time-invariant) 𝑘th moment of 𝑢𝑖𝑡. Then the 𝑙th derivative of 𝜈(𝑢2−𝑢1)𝑝(𝑥, ℎ) is given by

𝜕𝑙ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, ℎ) =

𝑝∑︁
𝑗=0

(︂
𝑝

𝑗

)︂[︃ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂(︀
𝜕𝑖ℎ𝜈𝑢𝑗(𝑥− ℎ)

)︀ (︀
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗(𝑥+ ℎ)

)︀]︃
.

Both equations (8) and (9) identify 𝜈𝑢𝑘 , leading to overidentification. A simple way of
combining the two possible expressions is averaging them as

𝜈𝑢𝑝(𝑥± ℎ) =
𝑟𝑦𝑝−1

1 (𝑦1−𝑦2)(𝑥± ℎ, 𝑥± ℎ) + 𝑟𝑦𝑝−1
2 (𝑦2−𝑦1)(𝑥± ℎ, 𝑥± ℎ)

2

−
𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗

)︂
𝜈𝑚𝑗(𝑥± ℎ)𝜈𝑢𝑝−𝑗(𝑥± ℎ),

𝜈𝑚𝑝(𝑥± ℎ) =
𝑟𝑦𝑝−1

1 𝑦2
(𝑥± ℎ, 𝑥± ℎ) + 𝑟𝑦𝑝−1

2 𝑦1
(𝑥± ℎ, 𝑥± ℎ)

2

−
𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗 − 1

)︂
𝜈𝑚𝑗(𝑥± ℎ)𝜈𝑢𝑝−𝑗(𝑥± ℎ).
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The 𝑙th derivatives of the above expressions with respect to ℎ are given by

𝜕𝑙ℎ𝜈𝑢𝑝(𝑥± ℎ) =
𝜕𝑙ℎ𝑟𝑦𝑝−1

1 (𝑦1−𝑦2)(𝑥± ℎ, 𝑥± ℎ) + 𝜕𝑙ℎ𝑟𝑦𝑝−1
2 (𝑦2−𝑦1)(𝑥± ℎ, 𝑥± ℎ)

2

−
𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗

)︂[︃ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂(︀
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥± ℎ)

)︀ (︀
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗(𝑥± ℎ)

)︀]︃
,

𝜕𝑙ℎ𝜈𝑚𝑝(𝑥± ℎ) =
𝜕𝑙ℎ𝑟𝑦𝑝−1

1 𝑦2
(𝑥± ℎ, 𝑥± ℎ) + 𝜕𝑙ℎ𝑟𝑦𝑝−1

2 𝑦1
(𝑥± ℎ, 𝑥± ℎ)

2

−
𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗 − 1

)︂[︃ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂(︀
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥± ℎ)

)︀ (︀
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗(𝑥± ℎ)

)︀]︃
.

B Implementation of Distribution Estimators

In this section, we provide convenient representations for the optimization problems associated
with the distribution estimators of section 3.2. Section B.1 discusses the case of estimating
the distribution at a single point 𝑥, while section B.2 is dedicated to the case of estimating the
distribution for an interval of values of 𝑥. In both cases, the estimation problem is reduced
to a standard quadratic program.

B.1 Estimation at One Point

We first consider the problem of estimating 𝐹0(𝑣|𝑥0) for a fixed point 𝑥0. Recall that 𝐹0(·|𝑥0)
is approximated using mixture cdfs of the form

Λ𝑝(𝑣|𝛾) =
𝑝∑︁
𝑗=1

𝛾𝑗Ψ(𝑣 − 𝑣𝑗,𝑝),

where 𝑝 is the number of components (the dimension of the corresponding sieve space ℒ𝑝), Ψ
is a cdf, and 𝑣1,𝑝 < · · · < 𝑣𝑝,𝑝 are fixed centers.

We introduce some additional notation. Define

Ω = diag{0!, 1!, . . . , (𝐾 − 1)!}.

Let 𝑀Ψ,𝐾 be a 𝐾 × 𝑝𝑣 matrix with (𝑘, 𝑗)th element given by
∫︀
𝑣𝑘−1Ψ(𝑑(𝑣 − 𝑣𝑗,𝑝))𝑑𝑣. Note

that 𝑀Ψ,𝐾 can be conveniently evaluated using formula (87) that requires only evaluating∫︀
𝑣𝑘Ψ(𝑑𝑣) for 𝑘 = 0, . . . , 𝐾 − 1. Further, let �̃�𝑘(𝑥) be an estimator for 𝜇𝑘(𝑥) and define

�̃�𝐾(𝑥) = (�̃�0(𝑥), �̃�1(𝑥), . . . , �̃�𝐾−1(𝑥))
′. (37)
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The function �̃�𝑁(𝛾|𝑥0) of eq. (17) in the main text can be represented as

�̃�𝑁(𝛾|𝑥0) = [�̃�𝐾(𝑥0)−𝑀Ψ,𝐾𝛾]
′Ω [�̃�𝐾(𝑥0)−𝑀Ψ,𝐾𝛾]

= 𝛾 ′𝑀 ′
Ψ,𝐾Ω𝑀Ψ,𝐾𝛾 − 2�̃�𝑘(𝑥0)𝑀Ψ,𝐾𝛾 + �̃�𝑘(𝑥0)

′�̃�𝑘(𝑥0)

It immediately follows that the estimated weights �̃� can be characterized as the solution of
the following quadratic program:

�̃� = argmin
𝛾:
∑︀𝐾

𝑗=1 𝛾𝑗=1,𝛾𝑗≥0

𝛾 ′(𝑀 ′
Ψ,𝐾Ω𝑀Ψ,𝐾 + 𝜆𝑁𝐼𝑝)𝛾 − 2�̃�𝑘(𝑥0)𝑀Ψ,𝐾𝛾

where 𝜆𝑁 ≥ 0 and 𝐼𝑝 is the 𝑝× 𝑝 identity matrix. Note that the Hessian is positive definite
if 𝐾 ≥ 𝑝 or 𝜆𝑁 > 0.

B.2 Estimation Over an Interval

We now consider the problem of estimating 𝐹0(𝑣|𝑥) as 𝑥 range in the interval 𝐼 = [𝑥𝑙𝑏, 𝑥𝑢𝑏].
𝐹0(·|·) is approximated using a finite mixture whose mixture probabilities are given by
Bernstein polynomials:

Λ𝑝𝑣 ,𝑝𝑥(𝑣|𝑥,𝛾) =
𝑝𝑣∑︁
𝑗=1

[︃
𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)

]︃
Ψ(𝑣 − 𝑣𝑗,𝑝𝑣) ,

𝑏𝑙,𝑝𝑥(𝑥) =

(︂
𝑝𝑥
𝑙

)︂(︂
𝑥− 𝑥𝑙𝑏
𝑥𝑢𝑏 − 𝑥𝑙𝑏

)︂𝑙(︂
𝑥𝑢𝑏 − 𝑥

𝑥𝑢𝑏 − 𝑥𝑙𝑏

)︂𝑝𝑥−𝑙
.

Let the 𝑝𝑣 × (𝑝𝑥 + 1) matrix 𝛾 have the (𝑗, 𝑙)th element 𝛾𝑗,𝑙−1. Let 𝜋 be a finite measure on 𝐼
such that the Lebesgue measure is absolutely continuous with respect to 𝜋. Let the objective
function �̂� be as in eq. (21):

�̂�(𝛾) =

∫︁ 𝐾−1∑︁
𝑘=0

1

𝑘!

[︃
�̂�𝑘(𝑥)−

∫︁
𝑣𝑘

𝐾∑︁
𝑗=1

[︃
𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)

]︃
Ψ(𝑑(𝑣 − 𝑣𝑗,𝑝𝑣))

]︃2
𝜋(𝑑𝑥).

The estimated weights are found as in eq. (23):

�̂� = argmin
𝛾:𝛾𝑗,𝑙≥0,

∑︀𝑝𝑣
𝑗=1 𝛾𝑗,𝑙=1 ∀𝑙

�̂�𝑁(𝛾) + 𝜆𝐼𝑁
∑︁
𝑗,𝑙

𝛾2𝑗,𝑙, 𝜆𝑁 ≥ 0. (38)

where 𝜆𝐼𝑁 ≥ 0. The objective function is strictly convex if 𝐾 ≥ 𝑝𝑣 or 𝜆𝐼𝑁 > 0.
It may be challenging to estimate �̂� using the above formulation of the problem. Every

evaluation of the objective function would require evaluating the 𝜋-integrals. Further, it may
be inconvenient to optimize over the matrix 𝛾.
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However, the following proposition shows that �̂� may be obtained by solving a quadratic
problem that only requires evaluating the integrals once. We introduce some notation first.
Define Ω = diag{0!, 1!, . . . , (𝐾 − 1)!}. Let 𝑀Ψ,𝐾 be a 𝐾 × 𝑝𝑣 matrix with (𝑘, 𝑗)th element
given by

∫︀
𝑣𝑘−1Ψ(𝑑(𝑣 − 𝑣𝑗,𝑝𝑣))𝑑𝑣. Define the matrices 𝐻 and 𝐶 as

𝐻 =
(︀
(𝑀 ′

Ψ,𝐾Ω𝑀Ψ,𝐾)⊗ 𝐼𝑝𝑥+1

)︀
, (39)

(𝐶)𝑖𝑗 =

∫︁
𝑏𝑖−1,𝑝𝑥(𝑥)𝑏𝑗−1(𝑝𝑥)(𝑥)𝜋(𝑑𝑥).

Note that 𝐶 is positive definite by definition of 𝜋 and since Bernstein polynomial of order 𝑝𝑥
form a system of (𝑝𝑥 + 1) linearly independent functions. Correspondingly, let 𝐶1/2 be the
(unique) positive definite matrix such that 𝐶 = 𝐶1/2𝐶1/2. Let 𝐶−1/2 = (𝐶1/2)−1. Next, define
𝑊 = (vec(𝐼𝑝𝑣)⊗ 𝐼𝑝𝑥+1)𝐶

−1 (vec(𝐼𝑝𝑣)
′ ⊗ 𝐼𝑝𝑥+1). Define 𝑉 to be the 𝑝𝑣(𝑝𝑥 + 1)× 𝑝𝑣(𝑝𝑥 + 1)

matrix with the (𝑖, 𝑗) element given by (𝑉 )𝑖𝑗 =
[︀∑︀𝑝𝑣

𝑘=1𝑤𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑖,𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑗

]︀
. Finally,

let ℎ be the 𝑝𝑣(𝑝𝑥 + 1)-vector ℎ with ((𝑝𝑥 + 1)(𝑗 − 1) + 𝑖)th element given by

(ℎ)(𝑝𝑥+1)(𝑗−1)+𝑖 =
𝐾+1∑︁
𝑘=0

𝑝𝑥∑︁
𝑙=0

(𝐶−1/2)𝑙+1,𝑖 (Ω𝑀𝜓,𝐾)𝑘+1,𝑗

∫︁
�̃�𝑘(𝑥)𝑏𝑙,𝑝𝑥(𝑥)𝜋(𝑑𝑥), (40)

where 𝑗 = 1, . . . , 𝐾 and 𝑖 = 1, . . . , 𝑝𝑥.

Proposition 1. Let �̂� be as in eq. (23). Then

�̂� = (𝐼𝑝𝑣 ⊗ 𝑔′) (vec(𝐼𝑝𝑣)⊗ 𝐼𝑝𝑥+1)𝐶
−1/2,

where

𝑔 = argmin
𝑔

𝑔′(𝐻 + 𝜆𝐼𝑁𝑉 )𝑔 − 2ℎ′𝑔 (41)

subject to (𝚤′𝐾 ⊗ 𝐼𝑝𝑥+1) 𝑔 = 𝐶1/2𝚤𝑝𝑥+1 and (𝐼𝑘 ⊗𝐶−1/2)𝑔 ≥ 0.

As proposition 1 shows, the problem of finding �̂� may be reduced to the quadratic program
(41). Solving (41) requires evaluating the 𝜋-integrals only once, to construct 𝐻 and ℎ. Note
that the new Hessian is positive definite if 𝜆𝐼𝑁 > 0 or 𝐾 − 1 ≥ 𝑝𝑣 (as implied by lemma H.1).
The proof of proposition 1 may be found in section Eof the Proof Appendix.
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Appendix II: Proofs of the Results in the
Main Text

C Identification

C.1 Proof of Lemma 2.1

Assumption C.1 (Regularity assumptions for identification). (i) X×A is equipped with
the product Borel 𝜎-algebra. (ii) sup𝑎,𝑥

⃒⃒⃒
𝜕
(𝑙)
𝑥 𝑚(𝑥, 𝑎)

⃒⃒⃒
< ∞ where 𝜕(𝑙)𝑥 𝑚 is the 𝑙th derivative

of 𝑚(𝑥, 𝑎) with respect to 𝑥 for 𝑙 = 0, 1, 2. (iii) 𝑚(𝑥, 𝑎) is well-defined for every 𝑥 ∈
supp(𝑋𝑖1) ∪ supp(𝑋𝑖2). (iv) 𝜕(𝑙)𝑥 𝑚(𝑥, 𝑎) < ∞ is a measurable function of 𝑎 for every 𝑥 for
𝑙 = 0, 1, 2 . Further, 𝜕𝑥𝑚(𝑥, 𝑎) is a continuous function of 𝑎 with respect to the topology of A
for every 𝑥.

Proof of lemma 2.1. We first consider identification of 𝜈𝑚𝑘(𝑥) and 𝜈𝑢𝑘1 (𝑥) for 𝑥 ∈ [𝑥𝑙𝑏−𝜖, 𝑥𝑢𝑏+
𝜖]. Observe that under assumption C.1 𝜈𝑚𝑘(𝑥) is well-defined for all positive integers 𝑘. Let
𝐵𝑥,0 = {𝑋𝑖1 = 𝑥,𝑋𝑖2 = 𝑥}. We proceed by (finite) induction on 𝑘. First, let 𝑘 = 1. Then
by assumption 2.1 E [𝑢𝑖1|𝑋𝑖1 = 𝑥] = 0. Further, then E [𝑌𝑖1|𝐵𝑥,0] = 𝜈𝑚(𝑥). Now suppose
that the identification result holds for 𝑙th moments, 𝑙 = 1, . . . , 𝑘 − 1, and consider the 𝑘th
moments. Consider the 𝑘th moment of 𝑌𝑖1 conditional on 𝐵𝑥,0.

E[𝑌 𝑘
𝑖1|𝐵𝑥,0] = E

[︀
(𝑚(𝑥, 𝛼𝑖) + 𝑢𝑖1)

𝑘|𝐵𝑥,0

]︀
=

𝑘∑︁
𝑙=0

(︂
𝑘

𝑙

)︂
𝜈𝑚𝑙(𝑥)𝜈𝑢𝑘−𝑙

1
(𝑥). (42)

where the second equality follows by the conditional independence of 𝛼𝑖 and 𝑢𝑖1 (assumption
2.1). All terms in eq. (42) except 𝜈𝑚𝑘(𝑥) nd 𝜈𝑢𝑘1 (𝑥) are identified by the inductive assumption,
as they are moments of order < 𝑘.

Now consider the expected value of 𝑌 𝑘−1
𝑖1 𝑌𝑖2 conditional on 𝐵𝑥,0:

E
[︀
𝑌 𝑘−1
𝑖1 𝑌𝑖2|𝐵𝑥,0

]︀
=

𝑘−1∑︁
𝑙=0

(︂
𝑘 − 1

𝑙

)︂
E
[︁
𝑚𝑙+1(𝑥, 𝛼𝑖)𝑢

(𝑘−1)−𝑙
𝑖1 |𝐵𝑥,0

]︁
+

𝑘−1∑︁
𝑙=0

(︂
𝑘 − 1

𝑙

)︂
E
[︁
𝑚𝑙(𝑥, 𝛼)𝑢

(𝑘−1)−𝑙
𝑖1 𝑢𝑖2|𝐵𝑥,0

]︁
=

𝑘∑︁
𝑙=1

(︂
𝑘 − 1

𝑙 − 1

)︂
𝜈𝑚𝑙(𝑥)𝜈𝑢𝑘−𝑙

1
(𝑥) (43)

where equality follows as 𝛼𝑖, 𝑢𝑖1, and 𝑢𝑖2 are independent and 𝜈𝑢2(𝑥) = 0 by assumption 2.1.
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Now subtract eq. (43) from eq. (42) to obtain

E
[︀
𝑌 𝑘−1
𝑖1 (𝑌𝑖1 − 𝑌𝑖2)|𝐵𝑥,0

]︀
= 𝜈𝑢𝑘1 (𝑥) +

𝑘−1∑︁
𝑙=1

[︂(︂
𝑘

𝑙

)︂
−
(︂
𝑘 − 1

𝑙 − 1

)︂]︂
𝜈𝑚𝑙(𝑥)𝜈𝑢𝑘−𝑙

1
(𝑥)

Observe that the left hand side is 𝑟𝑦𝑘−1
1 (𝑦2−𝑦1)(𝑥, 𝑥), which is identified under assumption 2.3.

All the moments in the sum are of order < 𝑘 and thus identified by the inductive assumption.
Rearranging, we obtain eq. (8). Similar logic applies to 𝜈𝑢𝑘2 (𝑥).

To obtain eq. (10), we write eq. (42) as 𝜈𝑚𝑘(𝑥) = 𝑟𝑦𝑘1 (𝑥, 𝑥)−
∑︀𝑘−1

𝑙=1 𝜈𝑚𝑙(𝑥)𝜈𝑢𝑘−𝑙
1

(𝑥)−𝜈𝑢𝑘1 (𝑥).
Substituting (8) and combining terms, we get eq. (10). We conclude that all 𝑘th moments
are identified and writable in the required form, finishing the inductive step.

Last, eq. (11) follows from eq. (5). Observe that 𝜈(𝑢2−𝑢1)𝑘(𝑥, ℎ) =
∑︀𝑘

𝑗=0

(︀
𝑘
𝑗

)︀
𝜈𝑢𝑗1

(𝑥 −
ℎ)𝜈𝑢𝑘−𝑗

2
(𝑥+ℎ). By part 2 of the lemma, each 𝜈𝑢𝑗𝑡 (𝑥) term is identified for all 𝑥 ∈ [𝑥𝑙𝑏−𝜖, 𝑥𝑢𝑏+𝜖].

As |ℎ| < 𝜖, identification follows.

C.2 Proof of Theorem 2.2

Before proving theorem 2.2, we prove a number of intermediate technical results. The
following lemma shows that the point �̃� = �̃�(𝛼𝑖) of eq. (3) in the main text can be chosen
measurably.

Lemma C.1. Let assumptions 2.1-2.3 and C.1 hold. Let 𝜖 be as in assumption 2.3 and let ℎ
satisfy |ℎ| ∈ [0, 𝜖). Then
(1) There exists a measurable function 𝜆ℎ(𝑎) : A → [−1, 1] such that for all 𝑎 ∈ A

𝑚(𝑥+ ℎ, 𝑎)−𝑚(𝑥− ℎ, 𝑎)

2ℎ
= 𝑚′(𝑥+ 𝜆ℎ(𝑎)ℎ, 𝑎).

(2) Let 𝑘 be a fixed natural number. Let 𝜆ℎ(𝑎) be a measurable function of 𝑎 such that
𝜆ℎ(𝑎) ∈ [−1, 1] for all 𝑎 ∈ A. Then there exists a measurable function 𝜅ℎ(𝑎) : A → [0, 1]

such that for all 𝑎 ∈ 𝐴

[𝜕𝑥𝑚(𝑥0 + 𝜆ℎ(𝑎)ℎ, 𝑎)]
𝑘 − [𝜕𝑥𝑚(𝑥0, 𝑎)]

𝑘

= ℎ𝑘𝜆ℎ(𝑎)𝜕
2
𝑥𝑚(𝑥0 + 𝜅ℎ(𝑎)𝜆ℎ(𝑎)ℎ, 𝑎) [𝜕𝑥𝑚(𝑥0 + 𝜅ℎ(𝑎)𝜆ℎ(𝑎)ℎ, 𝑎)]

𝑘−1 .

The proof of similar to that of lemma A.1.1 in Brownlees and Morozov (2022).

Proof. Fix ℎ and 𝑥 ∈ 𝐼 and define the function 𝑓(𝑎, 𝑦) : 𝐴× [−1, 1] → R as

𝑓(𝑎, 𝑦) = 𝑚(𝑥+ ℎ, 𝑎)−𝑚(𝑥− ℎ, 𝑎)− 2ℎ𝜕𝑥𝑚(𝑥+ 𝑦ℎ, 𝑎)
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We first discuss some properties of 𝑓(𝑎, 𝑦). First, 𝑓(𝑎, 𝑦) is well-defined. This holds as
𝑚(𝑥+ 𝑦ℎ, 𝑎) is well-defined for any 𝑦 ∈ [−1, 1] by the fact that 𝑥+ 𝑦ℎ ∈ [𝑥𝑙𝑏 − 𝜖, 𝑥𝑢𝑏 + 𝜖] and
by definition of 𝜖 and assumption C.1. Second, 𝑓(𝑎, 𝑦) is measurable in 𝑎 for any 𝑦 ∈ [−1, 1]

by assumption C.1. Third, 𝑓(𝑎, 𝑦) is continuous in 𝑦 on [−1, 1] under assumption C.1.
Define the correspondence 𝜑(𝑎) : A → [−1, 1] as

𝜙(𝑎) = {𝑦 ∈ [−1, 1] : 𝑓(𝑎, 𝑦) = 0}.

First, 𝜙(𝑎) is a measurable correspondence as 𝑔(𝑎, 𝑦) satisfies the assumptions of corollary
18.8 in Aliprantis and Border (2006). Second, 𝜙(𝑎) is non-empty for every value of 𝑎 by the
mean value and the intermediate value theorems. Third, 𝜙(𝑎) is closed for every value 𝑎
since 𝜕𝑥𝑚(·, 𝑎) is is continuous by assumption C.1. Then by the Kuratowski–Ryll-Nardzewski
measurable selection theorem (theorem 18.3 in Aliprantis and Border (2006)) 𝜙(𝑎) admits a
measurable selector, which we label 𝜆ℎ(𝑎). By construction, 𝜆ℎ(𝑎) satisfies the requirement
of the lemma.

The second assertion of the lemma is proved analogously.

Recall the notation 𝐵𝑥−ℎ,2ℎ = {𝑋𝑖1 = 𝑥− ℎ,𝑋𝑖2 = 𝑥+ ℎ}. The following lemma shows
that E

[︁
(𝜕𝑥𝑚(�̃�, 𝛼))𝑘 |𝐵𝑥−ℎ,2ℎ

]︁
converges to 𝜇𝑘(𝑥). This establishes the first condition for

identification outlined under eq. (4).

Lemma C.2. Let assumption 2.1-2.3 and C.1 hold. Suppose that 𝜆ℎ(𝑎) is a measurable
function of 𝑎 such that 𝜆ℎ(𝑎) ∈ [−1, 1] for all 𝑎 ∈ 𝐴 for each ℎ such that |ℎ| < 𝜖. Let 𝑘 be a
natural number. Then as ℎ→ 0 it holds that

E
[︀
(𝜕𝑥𝑚(𝑥+ 𝜆ℎ(𝛼𝑖)ℎ, 𝛼𝑖))

𝑘|𝑋𝑖1 = 𝑥− ℎ,𝑋𝑖2 = 𝑥+ ℎ
]︀
→ 𝜇𝑘(𝑥), (44)

where both conditional expectations are well-defined.

Proof. By lemma C.1, there exists a measurable function 𝜅ℎ(𝑎) : A → [0, 1] such that for all
𝑎 ∈ 𝐴

[𝜕𝑥𝑚(𝑥+ 𝜆ℎ(𝑎)ℎ, 𝑎)]
𝑘 − [𝜕𝑥𝑚(𝑥, 𝑎)]𝑘 (45)

= ℎ𝜆ℎ(𝑎)𝑘𝜕
2
𝑥𝑚(𝑥+ 𝜅ℎ(𝑎)𝜆ℎ(𝑎)ℎ, 𝑎) [𝜕𝑥𝑚(𝑥+ 𝜅ℎ(𝑎)𝜆ℎ(𝑎)ℎ, 𝑎)]

𝑘−1 .

Observe that both sides are bounded and measurable as functions of 𝑎 by assumption C.1
and measurability of 𝜆ℎ and 𝜅ℎ.

Recall that 𝐹𝛼|𝑋=𝑥(·) denotes the law of 𝛼 given {𝑋𝑖1 = 𝑥1, 𝑋𝑖2 = 𝑥2}, which is well-
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defined by assumption 2.2. Using eq. (45), we consider the expectation in question:

E
[︀
(𝜕𝑥𝑚(𝑥+ 𝜆ℎ(𝛼𝑖), 𝛼𝑖))

𝑘|𝑋𝑖1 = 𝑥− ℎ,𝑋𝑖2 = 𝑥+ ℎ
]︀

=

∫︁
(𝜕𝑥𝑚(𝑥+ 𝜆ℎ(𝑎)ℎ, 𝑎))

𝑘 𝐹𝛼|𝑋=(𝑥−ℎ,𝑥+ℎ)(𝑑𝑎)

=

∫︁
(𝜕𝑥𝑚(𝑥, 𝑎))𝑘𝐹𝛼|𝑋=(𝑥−ℎ,𝑥+ℎ)(𝑑𝑎)

+ ℎ𝑘

∫︁
𝜆ℎ(𝑎)𝜕

2
𝑥𝑚 (𝑥+ 𝜅ℎ(𝑎)𝜆ℎ(𝑎)ℎ, 𝑎) (𝜕𝑥𝑚(𝑥+ 𝜅ℎ(𝑎)𝜆ℎ(𝑎)ℎ, 𝑎))

𝑘−1 𝐹𝛼|𝑋=(𝑥−ℎ,𝑥+ℎ)(𝑑𝑎)

= (𝐼) + (𝐼𝐼).

Consider the terms (𝐼) and (𝐼𝐼) separately. Examine (𝐼). (𝜕𝑥𝑚(𝑥, 𝑎))𝑘 is a bounded
continuous function of 𝑎 by assumption C.1. Hence, by assumption 2.2 it holds that∫︀
(𝜕𝑥𝑚(𝑥, 𝑎))𝑘𝐹𝛼|𝑋=(𝑥−ℎ,𝑥+ℎ)(𝑑𝑎) →

∫︀
(𝜕𝑥𝑚(𝑥, 𝑎))𝑘𝐹𝛼|𝑋=(𝑥,𝑥)(𝑑𝑎) ≡ 𝜇𝑘(𝑥). Consider (𝐼𝐼):

ℎ𝑘

⃒⃒⃒⃒∫︁
𝜆ℎ(𝑎)𝜕

2
𝑥𝑚 (𝑥+ 𝜅ℎ(𝑎)𝜆ℎ(𝑎)ℎ, 𝑎) (𝜕𝑥𝑚(𝑥+ 𝜅ℎ(𝑎)𝜆ℎ(𝑎)ℎ, 𝑎))

𝑘−1 𝐹𝛼|𝑋1,𝑋2(𝑑𝑎|𝑥, 𝑥+ ℎ)

⃒⃒⃒⃒
≤ ℎ𝑘 sup

𝑎,𝑦

⃒⃒
𝜕2𝑥𝑚(𝑦, 𝑎)

⃒⃒
sup
𝑎,𝑦

|𝜕𝑥𝑚(𝑦, 𝑎)|𝑘−1

→ 0,

where the last line follows by assumption C.1 and ℎ→ 0. Hence (𝐼𝐼) → 0. Combining the
above arguments, we obtain eq. (44).

Proof of theorem 2.2. Fix 𝑥 ∈ 𝐼. Let |ℎ| < 𝜖. By lemma C.1, there exists a measurable
function 𝜆ℎ(𝑎) : A → [−1, 1] such that for all 𝑎 ∈ A it holds that (2ℎ)−1(𝑚(𝑥 + ℎ, 𝛼𝑖) −
𝑚 (𝑥− ℎ, 𝛼𝑖)) = 𝜕𝑥𝑚(𝑥 + 𝜆ℎ(𝛼𝑖)ℎ, 𝛼𝑖). Raising both sides to the 𝑘th power and taking
expectations conditional on 𝐵𝑥−ℎ,2ℎ = {𝑋𝑖1 = 𝑥− ℎ,𝑋𝑖2 = 𝑥+ ℎ} we get that

Δ𝑘(𝑥, ℎ) = E

[︃
(𝜕𝑥𝑚(𝑥+ 𝜆ℎ(𝛼𝑖)ℎ, 𝛼𝑖))

𝑘

⃒⃒⃒⃒
⃒𝐵𝑥−ℎ,2ℎ

]︃
(46)

which is well-defined by assumption 2.2. By lemma 2.1 Δ𝑘(𝑥, ℎ) is identified for all 𝑥 ∈ 𝐼 and ℎ
such that |ℎ| ∈ (0, 𝜀). By lemma C.2, it holds that E[(𝜕𝑥𝑚(𝑥+ 𝜆ℎ(𝛼)ℎ, 𝛼))

𝑘 |𝐵𝑥−ℎ,2ℎ] → 𝜇𝑘(𝑥)

as ℎ→ 0. Together with eq. (46), this fact implies that limℎ→0Δ𝑘(𝑥, ℎ) = 𝜇𝑘(𝑥). Since the
expression under the limit is identified for every ℎ, so is the limit as ℎ→ 0.

C.3 Proof of Theorem 2.3

Proof of theorem 2.3. By assumption C.1, 𝜕𝑥𝑚(𝑥, 𝛼) is a bounded random variable. Its
conditional moment generating function converges for all values of its argument. Since
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all moments of 𝜕𝑥𝑚(𝑥0, 𝛼𝑖) are identified, so is the mgf, as E [exp(𝑡𝜕𝑥𝑚(𝑥0, 𝛼𝑖))|𝐵𝑥0,0] =∑︀∞
𝑘=0(𝑘!)

−1𝑡𝑘𝜇𝑘(𝑥). Since the mgf uniquely determines the distribution, the distribution of
𝜕𝑥𝑚(𝑥, 𝛼) for stayers is also identified.

D Proof of Theorem 3.1

Recall that 𝐵𝑥−ℎ,2ℎ = {𝑋𝑖1 = 𝑥− ℎ,𝑋𝑖2 = 𝑥+ ℎ}. Let 𝐼 and 𝜖 be as in assumption 2.3. Let
𝐷𝑘 be defined as in eq. (12) in the main text:

𝐷𝑘(𝑥, ℎ) = E [(𝑚(𝑥+ ℎ, 𝛼𝑖)−𝑚(𝑥− ℎ, 𝛼𝑖))
𝑝|𝐵𝑥−ℎ,2ℎ] (47)

Note that 𝐷𝑘 is well-defined if assumption C.1 holds and if sup𝑥∈𝐼 E[|𝑢𝑖𝑡|
𝑘|𝑋𝑖𝑡 = 𝑥] <∞.

We begin by stating some technical smoothness assumptions and three lemmas that
establish that 𝐷𝑘 is indeed differentiable 𝑘 times under the assumptions of theorem 3.1.

D.1 Technical Assumptions

In order to prove theorem 3.1 and obtain asymptotic properties of our estimators, we impose
a number of regularity assumptions on the components of model (2). There are three
principal assumptions. First, we assume 𝑢𝑖𝑡 and (𝑋𝑖1, 𝑋𝑖2) are distributed continuously with
differentiable densities. Second, we require that the conditional laws of 𝑢𝑖𝑡 and 𝛼𝑖 given
𝑋𝑖 = 𝑥 are sufficiently smooth in the conditioning argument and that 𝑚(𝑥, 𝑎) is smooth in 𝑥
for all 𝑎 ∈ A. Third, we assume that all the derivatives involved are globally bounded.

Throughout, let 𝜏 be an integer. 𝜏 is taken to satisfy 𝜏 ≥ 𝑘 in theorem 3.1 and 𝜏 ≥ 𝑞 + 2

in theorems 4.1 and 4.2.

Assumption D.1. Assumption C.1 holds. For each 𝑎 ∈ A the function 𝑚(𝑥, 𝑎) is 𝜏 times
continuously differentiable in 𝑥. Further, sup𝑎,𝑥

⃒⃒
𝜕𝑙𝑥𝑚(𝑥, 𝑎)

⃒⃒
<∞, 𝑙 ≤ 𝜏 .

Assumption D.2 (Smoothness for 𝑋). 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2) is continuously distributed on X
with density 𝑓𝑋 . 𝑓𝑋 is bounded uniformly on X. 𝑓𝑋 is continuously differentiable 𝜏 times
with bounded derivatives.

Assumption D.3 (Smoothness for 𝑢). For 𝑡 = 1, 2, conditional on 𝑋𝑖𝑡 = 𝑥, 𝑢𝑖𝑡 is continu-
ously distributed with density 𝑓𝑢𝑡|𝑋𝑡=𝑥(𝑣). The density 𝑓𝑢𝑡|𝑋𝑡=𝑥(𝑣) is 𝜏 times continuously differ-
entiable in both the conditioning argument 𝑥 and the argument 𝑣. All derivatives of 𝑓𝑢𝑡|𝑋𝑡=𝑥(𝑣)

up to order 𝜏 are uniformly bounded over 𝑥 and 𝑣. Further, let 𝜕𝑗𝑐𝑜𝑛𝑑𝑓𝑢𝑡|𝑋𝑡=𝑥(𝑣) be the 𝑗th partial
derivative with respect to the conditioning argument 𝑥. Then

∫︀
|𝑢𝑡|𝑗 sup𝑥

⃒⃒
𝜕𝑙𝑐𝑜𝑛𝑑𝑓𝑢𝑡|𝑋𝑡=𝑥

⃒⃒
<∞

for 𝑙, 𝑗 ≤ 𝜏 .
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Assumption D.4 (Smoothness for 𝛼). Conditional on 𝑋𝑖 = 𝑥, the distribution of 𝛼𝑖 is
absolutely continuous with respect to some measure 𝜋𝛼 (common for all 𝑥) with density 𝑓𝛼|𝑋=𝑥.
𝑓𝛼|𝑋=𝑥 is continuously differentiable 𝜏 times in the conditional argument 𝑥. Furthermore,∫︀ ⃦⃦

sup𝑥 ∇𝑘
𝑥𝑓𝛼|𝑋=𝑥(𝑎)

⃦⃦
𝜋𝛼(𝑑𝑎) <∞ and sup𝑎,𝑥

⃦⃦
∇𝑘

𝑥𝑓𝛼|𝑋=𝑥(𝑎)
⃦⃦
<∞ for 𝑘 = 1, . . . , 𝜏 .

We remark that assumption D.4 strengthens the continuity property of assumption 2.2.

D.2 Supporting Lemmas

Under our assumptions, the density of the observed data (𝑌𝑖1, 𝑌𝑖2, 𝑋𝑖1, 𝑋𝑖2) satisfies a number
of regularity properties. Let 𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2), 𝑋 = (𝑋𝑖1, 𝑋𝑖2),𝑥 = (𝑥1, 𝑥2).

Lemma D.1. 2.1-2.3, C.1, D.1-D.4 hold. Then
(1) 𝑌𝑖 is continuously distributed given 𝑋𝑖 = 𝑥 for any 𝑥 ∈ X.
(2) The joint pdf 𝑓𝑌 ,𝑋(𝑦,𝑥) of (𝑌𝑖,𝑋𝑖) is differentiable 𝜏 times in 𝑥 with all partial deriva-

tives up to order 𝑞 bounded uniformly over 𝑦 and 𝑥.

Proof. By eq. (2), (𝑌𝑖𝑡, 𝑋𝑖𝑡) = (𝑚(𝑋𝑖𝑡, 𝛼𝑖) + 𝑢𝑖𝑡, 𝑋𝑖𝑡). Let 𝑢𝑖 = (𝑢𝑖1, 𝑢𝑖2) and 𝑚(𝑋𝑖𝑡, 𝛼) =

(𝑚(𝑋𝑖1, 𝛼𝑖),𝑚(𝑋𝑖2, 𝛼𝑖))
′, so that 𝑌𝑖 = 𝑚(𝑋𝑖, 𝛼𝑖) + 𝑢𝑖.

Under assumption D.3, 𝑢𝑖 is continuously distributed conditional on 𝑋𝑖 = 𝑥 for any value
𝑥, and thus 𝑌𝑖 is also continuously distributed conditional on 𝑋𝑖 = 𝑥 (regardless of the law
of 𝛼𝑖).

We now turn to the second assertion. By assumption 2.1, 𝑚(𝑋𝑖, 𝛼𝑖) and 𝑢𝑖 are independent
conditional on 𝑋𝑖. By a standard argument, we obtain that

𝑓𝑌 |𝑋=𝑥(𝑦) =

∫︁
𝑓𝑢|𝑋=𝑥(𝑦 −𝑚(𝑥, 𝑎))𝑓𝛼|𝑋=𝑥(𝑎)𝜋𝛼(𝑑𝑎), (48)

where 𝑓𝛼|𝑋=𝑥 is the conditional density of 𝛼𝑖 given 𝑋𝑖 = 𝑥 with respect to some domi-
nating measure 𝜋𝛼 (assumption D.4). We assert that under assumptions 2.1-2.3, D.1-D.4,
𝑓𝑌 |𝑋=𝑥(𝑦|𝑥) is 𝜏 times differentiable in 𝑥 and for 𝑘 ≤ 𝜏

∇𝑘
𝑥𝑓𝑌 |𝑋=𝑥(𝑦) =

∫︁
∇𝑘

𝑥

[︀
𝑓𝑢|𝑋=𝑥(𝑦 −𝑚(𝑥, 𝑎))𝑓𝛼|𝑋=𝑥(𝑎)

]︀
𝜋𝛼(𝑑𝑎), (49)

sup
𝑥,𝑦

⃦⃦
∇𝑘

𝑥𝑓𝑌 |𝑋=𝑥(𝑦,𝑥)
⃦⃦
<∞, (50)

where, throughout, ∇𝑘𝑓(𝑥) stands for a suitable vector of all 𝑘th order partial derivatives
and

⃦⃦
∇𝑘𝑓(𝑥)

⃦⃦
is the 2-norm of this vector. The ordering of partial derivatives inside the

vector is irrelevant.
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Consider 𝑘 = 1. Differentiate the expression under the integral in eq. (48) with respect
to 𝑥1:[︀

𝜕𝑥1
(︀
𝑓𝑢|𝑋=𝑥(𝑦 −𝑚(𝑥, 𝑎))

)︀]︀
𝑓𝛼|𝑋=𝑥(𝑎) + 𝑓𝑢|𝑋=𝑥(𝑦 −𝑚(𝑥, 𝑎))

[︀
𝜕𝑥1𝑓𝛼|𝑋=𝑥(𝑎)

]︀
. (51)

By assumption 2.1, 𝑓𝑢|𝑋=𝑥(𝑢) = 𝑓𝑢1|𝑋1=𝑥1(𝑢1)𝑓𝑢2|𝑋2=𝑥2(𝑢2). Let the operator 𝜕𝑐𝑜𝑛𝑑 be defined
as in assumption D.3. Analogously, let 𝜕𝑎𝑟𝑔𝑓𝑢𝑡|𝑋𝑡=𝑥(𝑣) be the partial derivative of 𝑓𝑢𝑡|𝑋𝑡=𝑥(𝑣)

with respect to the main argument 𝑣. Then

𝜕𝑥1
(︀
𝑓𝑢|𝑋=𝑥(𝑦 −𝑚(𝑥, 𝑎))

)︀
= 𝑓𝑢2|𝑋2=𝑥2(𝑦2 −𝑚(𝑥2, 𝑎))

[︁
𝜕𝑐𝑜𝑛𝑑𝑓𝑢1|𝑋1=𝑥1(𝑦1 −𝑚(𝑥1, 𝑎))

− 𝜕𝑎𝑟𝑔𝑓𝑢1|𝑋1=𝑥1(𝑦1 −𝑚(𝑥1, 𝑎))𝜕𝑥𝑚(𝑥1, 𝑎)
]︁
.

Under assumptions D.1 and D.3, 𝜕𝑥1𝑓𝑢|𝑋=𝑥(𝑦 −𝑚(𝑥, 𝑎)) and 𝑓𝑢|𝑋=𝑥(𝑢) are both bounded
uniformly over (𝑥,𝑦, 𝑎,𝑢) by some finite constant 𝐶𝑢. The expression in eq. (51) can be
bounded by 𝐶𝑢(sup𝑥 𝑓𝛼|𝑋=𝑥(𝑎) + sup𝑥

⃦⃦
∇𝑥𝑓𝛼|𝑋=𝑥(𝑎)

⃦⃦
). By assumption D.4

𝐶𝑢

∫︁ (︂
sup
𝑥
𝑓𝛼|𝑋=𝑥(𝑎) + sup

𝑥

⃦⃦
∇𝑥𝑓𝛼|𝑋=𝑥(𝑎)

⃦⃦)︂
𝜋𝛼(𝑑𝑎) <∞.

The same logic applies to the derivative with respect to 𝑥2. This argument establishes
differentiability of 𝑓𝑌 |𝑋=𝑥 with respect to 𝑥 and justifies interchanging the integral and the
derivative in eq. (49) for 𝑘 = 1. Further, again using an upper bound for the expression in
eq. (51), we obtain eq. (50) for 𝑘 = 1 as

sup
𝑥,𝑦

⃦⃦⃦⃦∫︁
∇𝑥

[︀
𝑓𝑢|𝑋=𝑥(𝑦 −𝑚(𝑥, 𝑎))𝑓𝛼|𝑋=𝑥(𝑎)

]︀
𝜋𝛼(𝑑𝑎)

⃦⃦⃦⃦
≤
∫︁

sup
𝑥,𝑦

⃦⃦
∇𝑥

[︀
𝑓𝑢|𝑋=𝑥(𝑦 −𝑚(𝑥, 𝑎))𝑓𝛼|𝑋=𝑥(𝑎)

]︀⃦⃦
𝜋𝛼(𝑑𝑎)

≤ 2𝐶𝑢

∫︁ (︂
sup
𝑥
𝑓𝛼|𝑋=𝑥(𝑎) + sup

𝑥

⃦⃦
∇𝑥𝑓𝛼|𝑋=𝑥(𝑎)

⃦⃦)︂
𝜋𝛼(𝑑𝑎) <∞.

To extend the result to the 𝑘th derivatives (𝑘 ≤ 𝜏), we note that 𝜕𝑗𝑥1𝜕
𝑘−𝑗
𝑥2

𝑓𝑢|𝑋=𝑥(𝑦 −
𝑚(𝑥, 𝑎))𝑓𝛼|𝑋=𝑥(𝑎) can be written as a sum of terms of the form [𝜕𝑝𝑥1𝜕

𝑙
𝑥2
𝑓𝑢|𝑋(𝑦−𝑚(𝑥, 𝑎))]×

[𝜕𝑗−𝑝𝑥1
𝜕𝑘−𝑗−𝑙𝑥2

𝑓𝛼|𝑋=𝑥(𝑎)]. Proceeding as above and using assumptions 2.1, D.1, D.3, and D.4,
we obtain eqs. (49) and (50) for all 𝑘 ≤ 𝜏 . Finally, since 𝑓𝑌 ,𝑋 = 𝑓𝑌 |𝑋𝑓𝑋 and 𝑓𝑋 is 𝜏
times continuously differentiable with bounded derivatives by assumption D.2, the second
conclusion of the lemma follows.

Let 𝑘 be fixed. Define the finite class 𝒢𝑘 of functions of (𝑦1, 𝑦2) as

𝒢𝑘 =
{︀
(𝑦2 − 𝑦1)

𝑗, 𝑦𝑗−1
1 (𝑦1 − 𝑦2), 𝑦

𝑗−1
2 (𝑦2 − 𝑦1), 𝑦

𝑗−1
1 𝑦2, 𝑗 ∈ 1, 2, . . . , 𝑘

}︀
. (52)
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𝒢𝑘 is the class of functions 𝑔 used in estimation of 𝜇𝑘(𝑥).
Let 𝐽 be as in assumption 2.3 and 𝑥 = (𝑥1, 𝑥2). For 𝑔𝑘 ∈ 𝒢 and 𝑥 ∈ 𝐽 , let 𝑟𝑔(𝑥) be

defined as in eq. (6).

Lemma D.2. Let 𝑘 < ∞ be fixed and let 𝒢𝑘 be defined as in eq. (52). Let 𝑔 ∈ 𝒢𝑘 and let
𝑟𝑔(𝑥) be defined as in eq. (6). Let assumptions 2.1-2.3, C.1, D.1-D.4 hold. Then 𝑟𝑔(𝑥) is 𝜏
times differentiable in 𝑥 with all partial derivatives up to order 𝜏 bounded.

Proof. We prove the assertion for 𝑔(𝑦1, 𝑦2) = (𝑦2 − 𝑦1)
𝑝, 𝑝 ≤ 𝑘, the proof for the other 𝑔 ∈ 𝒢𝑘

is analogous. Under assumption 2.1, 𝛼𝑖, 𝑢𝑖1 and 𝑢𝑖2 are independent, and so

𝑟𝑔(𝑥) = E [(𝑌𝑖2 − 𝑌𝑖1)
𝑝|𝑋𝑖 = 𝑥] =

𝑝∑︁
𝑗=0

(︂
𝑝

𝑗

)︂
E
[︀
(𝑚(𝑥2, 𝛼𝑖)−𝑚(𝑥1, 𝛼𝑖))

𝑗|𝑋𝑖 = 𝑥
]︀

(53)

×

[︃
𝑝−𝑗∑︁
𝑙=0

(︂
𝑝− 𝑗

𝑙

)︂
E[𝑢𝑙𝑖1|𝑋𝑖1 = 𝑥1]E[𝑢𝑝−𝑗−𝑙𝑖2 |𝑋𝑖2 = 𝑥2]

]︃
.

We proceed as in the proof of lemma D.1. We show that both kinds of moments that appear in
eq. (53) are differentiable 𝜏 times with bounded derivatives. First consider the differentiability
of E [(𝑚(𝑥2, 𝛼𝑖)−𝑚(𝑥1, 𝛼𝑖))

𝑗|𝑋𝑖 = 𝑥] =
∫︀
(𝑚(𝑥2, 𝑎)−𝑚(𝑥1, 𝑎))

𝑗𝑓𝛼|𝑋=𝑥(𝑎)𝜋𝛼(𝑑𝑎). The first
derivative of the expression under the integral with respect to 𝑥1 is given by

−𝑗(𝑚(𝑥2, 𝑎)−𝑚(𝑥1, 𝑎))
𝑗−1(𝜕𝑥1𝑚(𝑥1, 𝑎))𝑓𝛼|𝑋=𝑥(𝑎) + (𝑚(𝑥2, 𝑎)−𝑚(𝑥1, 𝑎))

𝑗(𝜕𝑥1𝑓𝛼|𝑋=𝑥(𝑎)).

By assumption D.1, there exists some constant 𝐶𝑚 < ∞ such that the above display
can be bounded by 𝐶𝑚

[︀
sup𝑥 𝑓𝛼|𝑋=𝑥(𝑎) + sup𝑥

⃦⃦
𝑓𝛼|𝑋=𝑥(𝑎)

⃦⃦]︀
. By D.4,

∫︀
[sup𝑥 𝑓𝛼|𝑋=𝑥(𝑎) +

sup𝑥

⃦⃦
𝑓𝛼|𝑋=𝑥(𝑎)

⃦⃦
]𝜋𝛼(𝑑𝑎) < ∞. We conclude that the integral and the derivative may be

interchanged as

𝜕𝑥1 E
[︀
(𝑚(𝑥2, 𝛼𝑖)−𝑚(𝑥1, 𝛼𝑖))

𝑗|𝑋𝑖 = 𝑥
]︀
=

∫︁
𝜕𝑥1
[︀
(𝑚(𝑥2, 𝑎)−𝑚(𝑥1, 𝑎))

𝑗𝑓𝛼|𝑋=𝑥(𝑎)
]︀
𝜋𝛼(𝑑𝑎).

Furthermore, the above partial derivative is bounded over 𝑥 as

sup
𝑥
𝜕𝑥1
⃒⃒
E
[︀
(𝑚(𝑥2, 𝛼𝑖)−𝑚(𝑥1, 𝛼𝑖))

𝑗|𝑋𝑖 = 𝑥
]︀⃒⃒

≤
∫︁

sup
𝑥

⃒⃒
𝜕𝑥1
[︀
(𝑚(𝑥2, 𝑎)−𝑚(𝑥1, 𝑎))

𝑗𝑓𝛼|𝑋=𝑥(𝑎)
]︀⃒⃒
𝜋𝛼(𝑑𝑎)

≤ 𝐶𝑚

∫︁
[sup

𝑥
𝑓𝛼|𝑋=𝑥(𝑎) + sup

𝑥

⃦⃦
𝑓𝛼|𝑋=𝑥(𝑎)

⃦⃦
]𝜋𝛼(𝑑𝑎) <∞.

The same argument applies to the derivative with respect to 𝑥2, showing that E[(𝑚(𝑥2, 𝛼𝑖)−
𝑚(𝑥1, 𝛼𝑖))

𝑗|𝑋𝑖 = 𝑥] is differentiable with bounded first derivatives. Logic similar to that of
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the proof of lemma D.1 extends this to higher-order derivatives up to order 𝜏 . The same
argument applies for all 𝑗 = 0, . . . , 𝑝.

Second, we turn to E
[︀
𝑢𝑙𝑖1|𝑋𝑖1 = 𝑥1

]︀
=
∫︀
𝑢𝑙𝑓𝑢1|𝑋1=𝑥1(𝑢)𝑑𝑢 and proceed similarly. Derivative

of the expression under the integral is given by 𝑢𝑙𝜕𝑐𝑜𝑛𝑑𝑓𝑢1|𝑋1=𝑥1(𝑢) for 𝜕𝑐𝑜𝑛𝑑 as in assumption
D.3. By assumption D.3,

∫︀
|𝑢|𝑙 sup𝑥1

⃒⃒
𝜕𝑐𝑜𝑛𝑑𝑓𝑢1|𝑋1=𝑥1(𝑢)

⃒⃒
𝑑𝑢 <∞, as 𝑙 ≤ 𝜏 . As above, we obtain

that 𝜕𝑥1 E
[︀
𝑢𝑙1|𝑋1 = 𝑥1

]︀
=
∫︀
𝑢𝑙𝑙(𝜕𝑐𝑜𝑛𝑑𝑓𝑢1|𝑋1=𝑥1(𝑢))𝑑𝑢 and sup𝑥

⃒⃒
𝜕𝑥1 E

[︀
𝑢𝑙1|𝑋1 = 𝑥1

]︀⃒⃒
<∞ The

same logic applies to higher-order derivatives and to the moments of 𝑢2.
Combining the above arguments together, we conclude that 𝑟𝑔(𝑥) is 𝜏 times differentiable

with all partial derivatives up to order 𝜏 are bounded over 𝑥.

Lemma D.3. Let the assumptions of theorem 3.1 hold. Then 𝜈𝑢𝑝𝑡 (𝑥 ± ℎ), 𝜈𝑚𝑘(𝑥 ± ℎ),
𝜈(𝑢2−𝑢1)𝑝(𝑥, ℎ), and 𝐷𝑝(𝑥, ℎ) are 𝜏 times differentiable in ℎ for all ℎ ∈ (−𝜖, 𝜖) for all 𝑥 ∈ 𝐼

for 𝑝 = 0, 1, . . . , 𝑘 with all derivatives uniformly bounded over 𝑥 ∈ 𝐼 and ℎ ∈ (−𝜖, 𝜖).

Proof of lemma D.3. Consider first 𝜈𝑢𝑝1(𝑥 − ℎ) and 𝜈𝑚𝑝(𝑥 − ℎ). We establish the result by
finite induction on 𝑝. The result is immediate for 𝑝 = 0. Consider 𝑝 = 1. Then 𝜈𝑢1(𝑥−ℎ) = 0,
which is 𝑘 times differentiable with respect to ℎ. By lemma 2.1 𝜈𝑚1(𝑥−ℎ) = 𝑟𝑦2(𝑥−ℎ, 𝑥−ℎ).
Then differentiability and boundedness of derivatives follow directly from lemma D.2. Now
suppose that the conclusion of the lemma holds for moments of order up to 𝑝− 1 and consider
the 𝑝th moments. Eq. (8) of lemma 2.1 expresses 𝜈𝑢𝑝1 as a smooth function of 𝑟𝑦𝑝−1

1 (𝑦1−𝑦2) and
lower-order moments of 𝑢𝑖1 and 𝑚. Using the inductive assumption, we conclude that 𝜈𝑢𝑝1 is
𝜏 times differentiable. Let 𝑙 ∈ {0, 1, . . . , 𝜏}. The 𝑙th derivative of 𝜈𝑢𝑝1(𝑥− ℎ) with respect to
ℎ is given by

𝜕𝑙ℎ𝜈𝑢𝑝1(𝑥− ℎ) = 𝜕𝑙ℎ𝑟𝑦𝑝−1
1 (𝑦1−𝑦2)(𝑥− ℎ, 𝑥− ℎ)

−
𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗

)︂[︃ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂(︀
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)

)︀ (︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)

)︁]︃
.

From lemma D.2 and the inductive assumption it immediately follows that

sup
𝑥∈𝐼,ℎ∈(−𝜖,𝜖)

⃒⃒
𝜕𝑙ℎ𝜈𝑢𝑝1(𝑥− ℎ)

⃒⃒
<∞.

A similar argument establishes the conclusions for moments of 𝑢𝑖1 and 𝑚.
The result for 𝜈(𝑢2−𝑢1)𝑝(𝑥, ℎ) follows from eq. (7) and from the corresponding results for

the moments of 𝑢𝑖1 and 𝑢𝑖2.
Finally, consider 𝐷𝑝(𝑥, ℎ). We proceed by finite induction on 𝑝, as above. First, consider

𝑝 = 1. Then
𝐷1(𝑥, ℎ) = 𝑟(𝑦2−𝑦1)(𝑥− ℎ, 𝑥+ ℎ).

57



By lemma D.2 the conclusion of the lemma then holds for 𝐷1. Now suppose that the
result holds for 𝐷𝑗 for all 𝑗 ≤ 𝑝 − 1. Eq. (14) expresses 𝐷𝑝(𝑥, ℎ) as a smooth function
of 𝑟(𝑦2−𝑦1)𝑝(𝑥 − ℎ, 𝑥 + ℎ), 𝐷𝑗(𝑥, ℎ) and 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, ℎ) for 𝑗 = 0, . . . , 𝑝 − 1. Thus, 𝐷𝑝 is
differentiable 𝜏 times. Now let 𝑙 ∈ {0, 1, . . . , 𝜏}. The 𝑙th derivative of 𝐷𝑝(𝑥, ℎ) with respect
to ℎ is given by

𝜕𝑙ℎ𝐷𝑝(𝑥, ℎ) = 𝜕𝑙ℎ𝑟(𝑦2−𝑦1)𝑝(𝑥− ℎ, 𝑥+ ℎ)

−
𝑝−1∑︁
𝑗=0

(︂
𝑝

𝑗

)︂[︃ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂(︀
𝜕𝑖ℎ𝐷𝑗(𝑥, ℎ)

)︀ (︀
𝜕𝑙−𝑖ℎ 𝜈(𝑢2−𝑢1)(𝑝−𝑗)(𝑥, ℎ)

)︀]︃

We conclude that by the inductive assumption, the corresponding result for derivatives of
𝜈
(𝑝−𝑗)
(𝑢2−𝑢1)(𝑥, ℎ), and lemma D.2 that sup𝑥∈𝐼,ℎ∈(−𝜖,𝜖)

⃒⃒
𝜕𝑙ℎ𝐷𝑝(𝑥, ℎ)

⃒⃒
<∞.

D.3 Proof of Theorem 3.1

Proof of theorem 3.1. First, identification of 𝐷𝑘(𝑥, ℎ) follows immediately from eq. (14) and
from lemma 2.1. Second, lemma D.3 establishes differentiability of 𝐷𝑘(𝑥, ℎ).

We now turn to the third assertion of the theorem. Recall that 𝐵𝑥−ℎ,2ℎ = {𝑋𝑖1 =

𝑥 − ℎ,𝑋𝑖2 = 𝑥 + ℎ}. By the mean value theorem and lemma C.1, there exists some
measurable �̃� = �̃�(ℎ, 𝛼𝑖) ∈ [𝑥− ℎ, 𝑥+ ℎ] such that

𝐷𝑘(𝑥, ℎ) ≡ E
[︀
(𝑚(𝑥+ ℎ, 𝛼𝑖)−𝑚(𝑥− ℎ, 𝛼𝑖))

𝑘|𝐵𝑥−ℎ,2ℎ
]︀

= (2ℎ)𝑘 E
[︁
(𝑚 (�̃�(ℎ, 𝛼𝑖), 𝛼))

𝑘 |𝐵𝑥−ℎ,2ℎ

]︁
.

We can then represent 𝐷𝑘 as

𝐷𝑘(𝑥, ℎ) = (2ℎ)𝑘𝜇𝑘(𝑥) + (2ℎ)𝑘
[︀
E
[︀
(𝑚(�̃�(ℎ, 𝛼𝑖), 𝛼𝑖))

𝑘|𝐵𝑥−ℎ,2ℎ
]︀
− 𝜇𝑘(𝑥)

]︀⏟  ⏞  
=:𝜃(ℎ)

. (54)

By lemma D.3 𝐷𝑘(𝑥, ℎ) is differentiable 𝑘 times in ℎ for ℎ around 0. 𝜃(ℎ) is the difference of
two 𝑘 times differentiable functions. We conclude that 𝜃(ℎ) is also 𝑘 times differentiable with
a continuous 𝑘th derivative for ℎ around 0.

We now show that the 𝜃(𝑘)(0) = 0. Consider the 𝑘th central difference of 𝜃(ℎ) around
ℎ = 0:∑︀𝑘

𝑗=0(−1)𝑗
(︀
𝑘
𝑗

)︀
𝜃
(︀(︀

𝑘
2
− 𝑗
)︀
ℎ
)︀

ℎ𝑘

= 2𝑘
𝑘∑︁
𝑗=0

(︂
𝑘

𝑗

)︂
(−1)𝑗

(︃
E

[︃(︂
𝑚

(︂
�̃�

(︂(︂
𝑘

2
− 𝑗

)︂
ℎ, 𝛼𝑖

)︂
, 𝛼𝑖

)︂)︂𝑘 ⃒⃒⃒⃒⃒𝐵𝑥−( 𝑘
2
−𝑗)ℎ,2( 𝑘

2
−𝑗)ℎ

]︃
− 𝜇𝑘(𝑥)

)︃
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Consider each term under the sum separately. As in the proof of theorem 2.2, it holds for
each 𝑗 ∈ {0, 1, . . . , 𝑘} as ℎ→ 0 that

E

[︃(︂
𝑚

(︂
�̃�

(︂(︂
𝑘

2
− 𝑗

)︂
ℎ, 𝛼𝑖

)︂
, 𝛼𝑖

)︂)︂𝑘 ⃒⃒⃒⃒⃒𝐵𝑥−( 𝑘
2
−𝑗)ℎ,2( 𝑘

2
−𝑗)ℎ

]︃
− 𝜇𝑘(𝑥) → 0.

Further, as ℎ → 0, the 𝑘th central difference approximates 𝜃(𝑘)(0). We conclude that
𝜃(𝑘)(0) = 0.

Now we differentiate eq. (54) 𝑘 times with respect to ℎ and evaluate at ℎ = 0 to obtain

𝜕𝑘ℎ𝐷𝑘(𝑥, ℎ) = 2𝑘(𝑘!)𝜇𝑘(𝑥).

Eq. (13) follows immediately.

E Proof of Proposition 1

Proof of proposition 1. Define the vector 𝑏(𝑥) of Bernstein polynomials of order 𝑝𝑥:

𝑏(𝑥) = (𝑏0,𝑝𝑥(𝑥), . . . , 𝑏𝑝𝑥,𝑝𝑥(𝑥))
′.

The objective function �̂�(𝛾) may be represented as

�̂�(𝛾) =

∫︁
[�̃�𝐾(𝑥)−𝑀Ψ,𝐾𝛾𝑏(𝑥)]

′ Ω [�̃�𝐾(𝑥)−𝑀Ψ,𝐾𝛾𝑏(𝑥)]𝜋(𝑑𝑥)

=

∫︁ [︀
𝑏(𝑥)′𝛾 ′𝑀 ′

Ψ,𝐾Ω𝑀Ψ,𝐾𝛾𝑏(𝑥)− 2�̃�𝐾(𝑥)Ω𝑀Ψ,𝐾𝛾𝑏(𝑥)
]︀
𝜋(𝑑𝑥) + 𝑐, (55)

where the vector �̃�𝐾(𝑥) is defined in eq. (37) and the 𝑐 term does not depend on Γ.
We first show that

�̂�(𝛾) = 𝑔′𝐻𝑔 − 2ℎ′𝛾 + 𝑐. (56)

We consider the quadratic and the linear terms in eq. (55) separately. Define the 𝑝𝑣(𝑝𝑥 + 1)-
vector 𝑔 as

𝑔 = vec(𝐶1/2𝛾 ′) (57)

and note that 𝛾 can be obtained from 𝑔 as

𝛾 = (𝐼𝑝𝑣 ⊗ 𝑔′) (vec(𝐼𝑝𝑣)⊗ 𝐼𝑝𝑥+1)𝐶
−1/2. (58)

First we tackle the quadratic term. Let 𝐴 = 𝑀 ′
Ψ,𝐾Ω𝑀Ψ,𝐾 , 𝐷 = 𝛾 ′𝐴𝛾. Let 𝑑𝑖𝑗 be the
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(𝑖, 𝑗)th element of 𝐷; 𝑐𝑖𝑗 be the (𝑖, 𝑗)th element of 𝐶. Then∫︁
𝑏(𝑥)𝐷𝑏(𝑥)𝜋(𝑑𝑥) =

𝑝𝑥+1∑︁
𝑖=1

𝑝𝑥+1∑︁
𝑖=1

𝑑𝑖𝑗

∫︁
𝑏𝑖−1,𝑝𝑥(𝑥)𝑏𝑗−1,𝑝𝑥(𝑥)𝜋(𝑑𝑥) =

𝑝𝑥+1∑︁
𝑖=1

𝑝𝑥+1∑︁
𝑖=1

𝑑𝑖𝑗𝑐𝑖𝑗. (59)

We further expand 𝑑𝑖𝑗 as follows. Let 𝛾𝑗 be the 𝑗th column of 𝛾 ′, that is, 𝛾 ′ = (𝛾1, . . . ,𝛾𝑝𝑣).
Also, let 𝑎𝑖𝑗 be the (𝑖, 𝑗)th element of 𝐴. Then 𝛾 ′𝐴𝛾 =

∑︀𝑝𝑣
𝑘=1

∑︀𝑝𝑣
𝑙=1 𝑎𝑘𝑙𝛾𝑙𝛾

′
𝑘, and so

𝑑𝑖𝑗 =

𝑝𝑣∑︁
𝑘=1

𝑝𝑣∑︁
𝑙=1

𝑎𝑘𝑙𝛾𝑙,𝑖−1𝛾𝑘,𝑗−1, 𝑖, 𝑗 = 1, 2 . . . , 𝑝𝑥 + 1.

Then

𝑝𝑥+1∑︁
𝑖=1

𝑝𝑥+1∑︁
𝑖=1

𝑑𝑖𝑗𝑐𝑖𝑗 =

𝑝𝑥+1∑︁
𝑖=1

𝑝𝑥+1∑︁
𝑖=1

(︃
𝑝𝑣∑︁
𝑘=1

𝑝𝑣∑︁
𝑙=1

𝑎𝑘𝑙𝛾𝑙,𝑖−1𝛾𝑘,𝑗−1

)︃
𝑐𝑖𝑗 =

𝑝𝑣∑︁
𝑘=1

𝑝𝑣∑︁
𝑙=1

𝑎𝑘𝑙

𝑝𝑥+1∑︁
𝑖=1

𝑝𝑥+1∑︁
𝑖=1

𝛾𝑙,𝑖−1𝛾𝑘,𝑗−1𝑐𝑖𝑗

=

𝑝𝑣∑︁
𝑘=1

𝑝𝑣∑︁
𝑙=1

𝑎𝑘𝑙𝛾
′
𝑙𝐶𝛾𝑘 =

𝑝𝑣∑︁
𝑘=1

𝑝𝑣∑︁
𝑙=1

𝑎𝑘𝑙�̃�
′
𝑙�̃�𝑘 = vec(�̃� ′)′(𝐴⊗ 𝐼𝑝𝑥+1) vec(�̃�

′) (60)

where �̃�𝑘 = 𝐶1/2𝛾𝑘 and �̃� = 𝛾𝐶1/2.
From eqs. (39), (57), (59), and (60) it now follows that∫︁ [︀

𝑏(𝑥)′𝛾 ′𝑀 ′
Ψ,𝐾Ω𝑀Ψ,𝐾𝛾𝑏(𝑥)

]︀
𝜋(𝑑𝑥) = 𝑔′𝐻𝑔. (61)

Similar analysis applies to the linear term in eq. (55). It holds that∫︁
𝑏′(𝑥)𝛾 ′𝑀 ′

Ψ,𝐾Ω�̃�𝐾(𝑥)𝜋(𝑑𝑥) =

∫︁
vec
(︀
𝑏′(𝑥)Γ′𝑀 ′

Ψ,𝐾Ω�̃�𝐾(𝑥)
)︀
𝜋(𝑑𝑥)

=

∫︁
vec
(︀
𝑏′(𝑥)𝐶−1/2�̃� ′𝑀 ′

Ψ,𝐾Ω�̃�𝐾(𝑥)
)︀
𝜋(𝑑𝑥)

=

[︂∫︁ (︀
(�̃�𝐾(𝑥)

′Ω𝑀Ψ,𝐾)⊗ (𝑏′(𝑥)𝐶−1/2)
)︀
𝜋(𝑑𝑥)

]︂
vec(�̃� ′).(62)

The (𝑝𝑥+1)(𝑗− 1)+ 𝑖th element (𝑗 = 1, . . . , 𝑝𝑣, 𝑖 = 1, . . . , 𝑝𝑥+1) of the leading matrix takes
form

𝐾−1∑︁
𝑘=0

𝑝𝑥∑︁
𝑙=0

(𝐶−1/2)𝑙+1,𝑖 (Ω𝑀Ψ,𝐾)𝑘+1,𝑗

∫︁
�̃�𝑘(𝑥)𝑏𝑙,𝑝𝑥(𝑥)𝜋(𝑑𝑥).

It follows from eqs. (40), (57), (62) that∫︁
𝑏′(𝑥)𝛾 ′𝑀 ′

Ψ,𝐾Ω�̃�𝐾(𝑥)𝜋(𝑑𝑥) = ℎ′𝑔 (63)

Eq. (56) now follows from eqs. (55), (61), and (63).
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Now consider the constraints of the problem (38). We restate the constraints on 𝛾 in
terms of equivalent constraints on 𝑔.

First we focus on equality constraints. Each column of 𝛾 need to sum to 1. To represent
this constraint in matrix form, let 𝚤𝑘 be a 𝑘-dimensional vector of all ones. Then the original
constraint is equivalent to

𝚤′𝑝𝑣𝛾 = 𝚤′𝑝𝑥+1

Postmultiply by 𝐶1/2 and transpose to obtain �̃� ′𝚤𝐽 = 𝐶1/2𝚤𝑝𝑥+1. Vectorizing this, we obtain
the new constraint in terms of 𝑔(︀

𝚤′𝑝𝑣 ⊗ 𝐼𝑝𝑥+1

)︀
vec(Γ̃′) = vec(𝐶1/2𝚤𝑝𝑥+1) =

(︀
I1⊗𝐶1/2

)︀
vec(𝚤𝑝𝑥+1) = 𝐶1/2𝚤𝑝𝑥+1

Note that vec(𝐶1/2𝚤𝑝𝑥+1) =
(︀
I1⊗𝐶1/2

)︀
vec(𝚤𝑝𝑥+1) = 𝐶1/2𝚤𝑝𝑥+1. Then by eq. (57) the equality

requirement on 𝛾 imply that(︀
𝚤′𝑝𝑣 ⊗ 𝐼𝑝𝑥+1

)︀
𝑔 = vec(𝐶1/2𝚤𝑝𝑥+1) = 𝐶1/2𝚤𝑝𝑥+1 (64)

Proceeding in reverse order, we obtain that the above constraint on 𝑔 implies the corresponding
equality constraints on 𝛾.

Now consider the inequality constraints on 𝛾. Each 𝛾𝑙,𝑗 is required to be non-negative.
As above, let 𝛾𝑘 be the 𝑘th column of 𝛾 ′. The non-negativity requirement can be written as
the vector inequality 0 ≤ 𝛾𝑘, where the inequality applies pointwise. Observe that 𝛾𝑘 may be
represented as 𝛾𝑘 = 𝐶−1/2𝐶1/2𝛾𝑘 = 𝐶−1/2�̃�𝑘, yielding equivalent inequalities

0 ≤ 𝐶−1/2�̃�𝑘, 𝑘 = 1, . . . , 𝑝𝑣.

Stacking these inequalities on top of each other across 𝑘, we obtain the following non-negativity
constraints

0 ≤ (𝐼𝑘 ⊗ 𝐶−1/2) vec(Γ̃′) (65)

By eq. (57), the above is identical to

0 ≤ (𝐼𝑘 ⊗ 𝐶−1/2)𝑔′.

Finally, to handle the penalty, note that

𝑝𝑣∑︁
𝑗=1

𝑝𝑥∑︁
𝑙=0

𝛾2𝑗,𝑙 = tr(𝛾𝛾 ′). (66)
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Using eq. (58), we obtain that

tr(𝛾𝛾 ′) = tr
(︀
(𝐼𝑝𝑣 ⊗ 𝑔′) (vec(𝐼𝑝𝑣)⊗ 𝐼𝑝𝑥+1)𝐶

−1 (vec(𝐼𝑝𝑣)
′ ⊗ 𝐼𝑝𝑥+1) (𝐼𝑝𝑣 ⊗ 𝑔)

)︀
(67)

= tr (𝑊 (𝐼𝑝𝑣 ⊗ 𝑔)(𝐼𝑝𝑣 ⊗ 𝑔′)) = tr (𝑊 (𝐼𝑝𝑣 ⊗ 𝑔𝑔′))

where 𝑊 = (vec(𝐼𝑝𝑣)⊗ 𝐼𝑝𝑥+1)𝐶
−1 (vec(𝐼𝑝𝑣)

′ ⊗ 𝐼𝑝𝑥+1). To evaluate the above trace, let
𝑍 = I𝑝𝑣 ⊗(𝑔𝑔′). Fix 𝑙 ∈ {1, 2, . . . , 𝑝2𝑣(𝑝𝑥+1)}. Let 𝑘 and 𝑖 be such that 𝑙 = 𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑖

for 1 ≤ 𝑖 ≤ 𝑝𝑣(𝑝𝑥 + 1), 𝑘 = 1, . . . , 𝑝𝑣. The (𝑙, 𝑙)th element of 𝑊𝑍 is given by

𝑝2𝑣(𝑝𝑥+1)∑︁
𝑗=1

𝑤𝑙𝑗𝑧𝑗𝑙 =

𝑝𝑣(𝑝𝑥+1)𝑘∑︁
𝑗=𝑝𝑣(𝑝𝑥+1)(𝑘−1)+1

𝑤𝑙𝑗𝑧𝑗𝑙 =

𝑝𝑣(𝑝𝑥+1)∑︁
𝑗=1

𝑤𝑙,𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑗𝑔𝑗𝑔𝑖

=

𝑝𝑣(𝑝𝑥+1)∑︁
𝑗=1

𝑤𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑖,𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑗𝑔𝑗𝑔𝑖

Thus,

tr(𝑊𝑍) =

𝑝𝑣(𝑝𝑥+1)∑︁
𝑖=1

𝑝𝑣(𝑝𝑥+1)∑︁
𝑗=1

𝑤𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑖,𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑗𝑔𝑗𝑔𝑖

=

𝑝𝑣(𝑝𝑥+1)∑︁
𝑖=1

𝑝𝑣(𝑝𝑥+1)∑︁
𝑗=1

𝑔𝑗𝑔𝑖

[︃
𝑝𝑣∑︁
𝑘=1

𝑤𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑖,𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑗

]︃
(68)

Define 𝑉 be the 𝑝𝑣(𝑝𝑥 + 1) × 𝑝𝑣(𝑝𝑥 + 1) matrix with the (𝑖, 𝑗) element given by (𝑉 )𝑖𝑗 =[︀∑︀𝑝𝑣
𝑘=1𝑤𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑖,𝑝𝑣(𝑝𝑥+1)(𝑘−1)+𝑗

]︀
. We conclude by eqs. (66), (67), and (68) that

𝑝𝑣∑︁
𝑗=1

𝑝𝑥∑︁
𝑙=0

𝛾2𝑗,𝑙 = 𝑔′𝑉 𝑔. (69)

The assertion of the proposition now follows from eqs. (57), (58), (56), and (69), and the
discussion related to eqs. (64) and (65).

F Proof of Theorem 4.1

Proof of theorem 4.1. For clarity, we break the proof down into 5 steps:
(I) We first introduce a convenient parametrization for conditional moments of (𝑌𝑖1, 𝑌𝑖2)

given (𝑋𝑖1, 𝑋𝑖2) that matches the approach to implementation proposed in the Sup-
plementary Appendix.

(II) We obtain convergence rates for the estimators of conditional moments of (𝑌𝑖1, 𝑌𝑖2)
given (𝑋𝑖1, 𝑋𝑖2) and of their derivatives.
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(III) We transfer these first-step convergence rates to the estimators of 𝜈𝑢𝑘𝑡 , 𝜈𝑚𝑘 and of
their derivatives.

(IV) The rates for 𝜈𝑢𝑘𝑡 are used to obtain the convergence rates of estimators of 𝜈(𝑢2−𝑢1)𝑝
and of its derivatives.

(V) Finally, the second and the fourth steps are leveraged to obtain convergence rates for
the estimators of 𝐷𝑝 and their derivatives. From these rates we deduce the convergence
rate of �̂�𝑘.

I We begin by introducing a convenient parametrization for the conditional expectations
of function of 𝑌 given 𝑋, mirroring the approach to implementation described in in the
Supplementary Appendix.
(1) Define the variables 𝑊 (Δ)

𝑖1 = (𝑋𝑖2 +𝑋𝑖1)/2 and 𝑊 (Δ)
𝑖2 = (𝑋𝑖2 −𝑋𝑖1)/2. Let the class 𝒢𝑘

be defined as in eq. (52). For any function 𝑔(𝑦1, 𝑦2) ∈ 𝒢𝑘 let

𝑅(Δ)
𝑔 (𝑤1, 𝑤2) = E

[︁
𝑔(𝑌𝑖1, 𝑌𝑖2)

⃒⃒⃒
𝑊

(Δ)
𝑖1 = 𝑤1,𝑊

(Δ)
𝑖2 = 𝑤2

]︁
.

Observe that 𝐵𝑥−ℎ,2ℎ ≡ {𝑋𝑖1 = 𝑥 − ℎ,𝑋𝑖2 = 𝑥 + ℎ} = {𝑊 (Δ)
𝑖1 = 𝑥,𝑊

(Δ)
𝑖2 = ℎ}. Cor-

respondingly, it holds that 𝑟𝑔(𝑥 − ℎ, 𝑥 + ℎ) = 𝑅
(Δ)
𝑔 (𝑥, ℎ), where 𝑟𝑔 is defined in eq.

(6). It follows that 𝜕𝑙ℎ𝑟𝑔(𝑥 − ℎ, 𝑥 + ℎ) with respect to ℎ at ℎ = 0 can be obtained as
𝜕𝑙𝑤2

𝑅
(Δ)
𝑔 (𝑤1, 𝑤2) at (𝑤1, 𝑤2) = (𝑥, 0).

(2) Define 𝑊 (−)
𝑖1 = (𝑋𝑖2 −𝑋𝑖1)/2 and 𝑊 (−)

𝑖,2 = −(𝑋𝑖1 +𝑋𝑖2)/2. For a function 𝑔(𝑦1, 𝑦2) define

𝑅(−)
𝑔 (𝑤1, 𝑤2) = E

[︁
𝑔(𝑌1, 𝑌2)

⃒⃒⃒
𝑊

(−)
𝑖1 = 𝑤1,𝑊

(−)
𝑖2 = 𝑤2

]︁
.

Then 𝑟𝑔(𝑥− ℎ, 𝑥− ℎ) = 𝑅
(−)
𝑔 (0,−𝑥+ ℎ). As above, it follows that 𝜕𝑙ℎ𝑟𝑔(𝑥− ℎ, 𝑥− ℎ) at

ℎ = 0 is equal to 𝜕𝑙𝑤2
𝑅

(−)
𝑔 (𝑤1, 𝑤2) at (𝑤1, 𝑤2) = (0,−𝑥).

(3) Define 𝑊 (+)
𝑖1 = (𝑋𝑖2 −𝑋𝑖1)/2 and 𝑊 (+)

𝑖2 = (𝑋𝑖1 +𝑋𝑖2)/2. For a function 𝑔(𝑦1, 𝑦2) set

𝑅(+)
𝑔 (𝑤1, 𝑤2) = E

[︁
𝑔(𝑌1, 𝑌2)

⃒⃒⃒
𝑊

(+)
𝑖1 = 𝑤1,𝑊

(+)
𝑖2 = 𝑤2

]︁
.

Then 𝑟𝑔(𝑥 + ℎ, 𝑥 + ℎ) = 𝑅
(+)
𝑔 (0, 𝑥 + ℎ), and so 𝜕𝑙ℎ𝑟𝑔(𝑥 + ℎ, 𝑥 + ℎ) at ℎ = 0 is equal to

𝜕𝑙𝑤2
𝑅

(+)
𝑔 (𝑤1, 𝑤2) at (𝑤1, 𝑤2) = (0, 𝑥).

II As the first building block for the rates of the moment estimators, we now consider the

estimators of the different 𝑅 functions. Let 𝜕𝑙𝑤2
𝑅

(Δ)
𝑔 (𝑤1, 𝑤2)

⋀︀

is the local polynomial LP(𝑞)

estimator of 𝑅(Δ)
𝑔 (𝑤1, 𝑤2); analogously for 𝜕𝑙𝑤2

𝑅
(−)
𝑔 (𝑤1, 𝑤2)

⋀︀

and 𝜕𝑙𝑤2
𝑅

(+)
𝑔 (𝑤1, 𝑤2)

⋀︀

. To obtain
the convergence rates for these estimators, we verify the conditions of theorem 6 of Masry
(1996a):
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• Consider condition (1a). First, the kernel automatically has 2𝑞 finite moments, as Ψ𝐿𝑃 has
bounded support under assumption 4.1. Second, 𝑓𝑋(𝑥) is bounded uniformly in 𝑥 under
assumption D.2. Third, under assumption D.2 𝑓𝑋 has bounded first derivatives, and thus
𝑓𝑋 is automatically uniformly continuous.

• Condition (2b) follows immediately from (1a).
• Condition (3) holds by assumption 4.1 on the kernel Ψ𝐿𝑃 .
• Let 𝑔 ∈ 𝒢𝑘. Condition (5d) holds, as by lemma D.2 all (𝑞 + 1)th derivatives of 𝑟𝑔(𝑥) are

bounded uniformly in 𝑥.
• Fix 𝑔 ∈ 𝒢𝑘. By lemma D.2 all (𝑞 + 2)th derivatives of 𝑟𝑔(𝑥) exist and are uniformly

bounded over 𝑥. It then readily follows each (𝑞 + 1)th derivative of 𝑟𝑔(𝑥) is Lipschitz in 𝑥,
establishing condition (6).

• Condition (4b) is automatically implied by conditions (5d) and (6).
• We turn to condition (7). First consider condition (7a). Let 𝛿′ = 𝛿/𝑘 > 0 for 𝛿 of the assump-

tions of the theorem. For any 𝑔 ∈ 𝒢𝑘 it holds that sup𝑥∈𝐽 E
[︀
|𝑔(𝑌𝑖1, 𝑌𝑖2)|2+𝛿

′|𝑋𝑖 = 𝑥
]︀
<∞.

We show this for 𝑔(𝑦1, 𝑦2) = (𝑦2−𝑦1)𝑗, 𝑗 ≤ 𝑘, the argument for other functions is analogous:

sup
𝑥

E
[︁
|(𝑌𝑖2 − 𝑌𝑖1)|2+𝛿

′
|𝑋𝑖 = 𝑥

]︁
(70)

≤ sup
𝑥

22𝑗+𝛿𝑗/𝑘 E
[︂⃒⃒⃒
|𝑌𝑖1|𝑗 + |𝑌𝑖2|𝑗

⃒⃒⃒2+𝛿′
|𝑋𝑖 = 𝑥

]︂
≤ 22𝑗+𝛿𝑗/𝑘

[︃
2 sup
𝑥,𝑎

|𝑚(𝑥, 𝑎)|2𝑗+𝛿𝑗/𝑘 +
2∑︁
𝑡=1

sup
𝑥

E
[︀
|𝑢𝑖𝑡|2𝑗+𝛿𝑗/𝑘|𝑋𝑖 = 𝑥

]︀]︃
<∞,

where the last inequality follows from the assumption D.1 and the assumption that
sup𝑥 E

[︀
|𝑢𝑖𝑡|2𝑘+𝛿|𝑋𝑖 = 𝑥

]︀
<∞ combined with the observation that 2𝑗 + 𝛿𝑗/𝑘 ≤ 2𝑘 + 𝛿.

Conditions (7b)-(7c) follow from lemma D.1. Finally, (7d) holds as {𝑌𝑖,𝑋𝑖} is iid across 𝑖.
• In condition (8), take 𝐷 equal to 𝐽 for 𝐽 of assumption 2.3. By assumption 2.3, 𝑓𝑋(𝑥) is

bounded away from 0 on 𝐽 .
• Condition (4.5) on 𝑠 holds under the assumptions of the theorem with 𝜎 = 𝜈 = ∞, as
{𝑌𝑖,𝑋𝑖} is iid across 𝑖.

It follows from theorem 6 of Masry (1996a) that for any 𝑙 ∈ {0, . . . , 𝑘} and any 𝑔 ∈ 𝒢𝑘

sup
𝑥∈𝐼

⃒⃒⃒⃒
𝜕𝑙𝑤2

𝑅
(Δ)
𝑔 (𝑥, 0)

⋀︀

− 𝜕𝑙𝑤2
𝑅(Δ)
𝑔 (𝑥, 0)

⃒⃒⃒⃒
= 𝑂𝑎.𝑠.(𝛿𝑙,𝑁),

sup
𝑥∈𝐼

⃒⃒⃒⃒
𝜕𝑙𝑤2

𝑅
(−)
𝑔 (0,−𝑥)
⋀︀

− 𝜕𝑙𝑤2
𝑅(−)
𝑔 (0,−𝑥)

⃒⃒⃒⃒
= 𝑂𝑎.𝑠.(𝛿𝑙,𝑁),
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sup
𝑥∈𝐼

⃒⃒⃒⃒
𝜕𝑙𝑤2

𝑅
(+)
𝑔 (0, 𝑥)

⋀︀

− 𝜕𝑙𝑤2
𝑅(+)
𝑔 (0, 𝑥)

⃒⃒⃒⃒
= 𝑂𝑎.𝑠.(𝛿𝑙,𝑁) (71)

where

𝛿𝑙,𝑁 =

√︂
log(𝑁)

𝑁𝑠2+2𝑙
+ 𝑠𝑞−𝑙+1.

III We now establish convergence rates for 𝜈𝑢𝑘𝑡 , 𝜈𝑚𝑘 and their derivatives. Note that 𝜈𝑢𝑘𝑡
and 𝜈𝑚𝑘 are differentiable at least 𝑘 times by lemma D.3. First, we rewrite the expressions of
lemma 2.1 in terms of above notation for regression functions. If 𝑘 = 1

𝜕𝑙ℎ𝜈𝑢𝑡(𝑥− ℎ)|ℎ=0 = 0, 𝑡 = 1, 2,

𝜕𝑙ℎ𝜈𝑚(𝑥± ℎ)|ℎ=0 = 𝜕𝑙𝑤2
𝑅(±)
𝑦1𝑦2

(0,±𝑥). (72)

If 𝑘 = 2, we instead have

𝜕𝑙ℎ𝜈𝑢𝑘1 (𝑥− ℎ)|ℎ=0

= 𝜕𝑙𝑤2
𝑅

(−)

𝑦𝑘−1
1 (𝑦1−𝑦2)

(0,−𝑥)

−
𝑘−1∑︁
𝑗=1

(︂
𝑘 − 1

𝑗

)︂[︃ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂(︀
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

)︀ (︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑘−𝑗

1
(𝑥− ℎ)|ℎ=0

)︁]︃
,

𝜕𝑙ℎ𝜈𝑢𝑘2 (𝑥+ ℎ)|ℎ=0

= 𝜕𝑙𝑤2
𝑅

(+)

𝑦𝑘−1
2 (𝑦2−𝑦1)

(0, 𝑥)

−
𝑘−1∑︁
𝑗=1

(︂
𝑘 − 1

𝑗

)︂[︃ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂(︀
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥+ ℎ)|ℎ=0

)︀ (︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑘−𝑗

2
(𝑥+ ℎ)|ℎ=0

)︁]︃
,

𝜕𝑙ℎ𝜈𝑚𝑘(𝑥± ℎ)|ℎ=0

= 𝜕𝑙𝑤2
𝑅

(±)

𝑦𝑘−1
1 𝑦2

(0,±𝑥)

−
𝑘−1∑︁
𝑗=1

(︂
𝑘 − 1

𝑗 − 1

)︂[︃ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂(︀
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥± ℎ)|ℎ=0

)︀ (︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑘−𝑗

𝑡
(𝑥± ℎ)|ℎ=0

)︁]︃
,

where in the last line we take 𝑡 equal to 1 if the argument of 𝜈
𝑢
(𝑘−𝑗)
𝑡

is 𝑥 − ℎ, and 𝑡 = 2

otherwise.
Let 𝜕𝑙ℎ𝜈𝑢𝑘1 (𝑥− ℎ)|ℎ=0

⋀︀

be the estimator for 𝜕𝑙ℎ𝜈𝑢𝑘1 (𝑥− ℎ)|ℎ=0, formed as the sample analog

of the above equations (see algorithm 1). Likewise, let 𝜕𝑙ℎ𝜈𝑚𝑘(𝑥± ℎ)|ℎ=0

⋀︀

be the estimator for
𝜕𝑙ℎ𝜈𝑚𝑘(𝑥± ℎ)|ℎ=0.
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We assert that for each 𝑝 = {0, . . . , 𝑘} it holds for all 𝑙 ∈ {0, . . . , 𝑘} that

sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙ℎ𝜈𝑢𝑝1(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑙ℎ𝜈𝑢𝑝1(𝑥− ℎ)|ℎ=0

⃒⃒⃒
= 𝑂𝑎.𝑠. (𝛿𝑙,𝑁)

sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙ℎ𝜈𝑢𝑝2(𝑥+ ℎ)|ℎ=0

⋀︀

− 𝜕𝑙ℎ𝜈𝑢𝑝2(𝑥+ ℎ)|ℎ=0

⃒⃒⃒
= 𝑂𝑎.𝑠. (𝛿𝑙,𝑁) (73)

sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙ℎ𝜈𝑚𝑝(𝑥± ℎ)|ℎ=0

⋀︀

− 𝜕𝑙ℎ𝜈𝑚𝑝(𝑥± ℎ)|ℎ=0

⃒⃒⃒
= 𝑂𝑎.𝑠. (𝛿𝑙,𝑁) .

We prove the above assertion by finite induction on 𝑝. First, the results for 𝑝 = 0, 1 follows
immediately from eqs. (71) and (72). Suppose that (73) holds for moments of order up to
𝑝 − 1. Then consider the 𝑝th moments. We only consider 𝜕𝑙ℎ𝜈𝑢𝑝1(𝑥− ℎ)|ℎ=0

⋀︀

explicitly, the
argument is completely analogous for the other estimators.

The estimation error can be bounded as

sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙ℎ𝜈𝑢𝑝1(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑙ℎ𝜈𝑢𝑝1(𝑥− ℎ)|ℎ=0

⃒⃒⃒
≤ sup

𝑥∈𝐼

⃒⃒⃒⃒
𝜕𝑙𝑤2

𝑅
(−)

𝑦𝑝−1
1 (𝑦1−𝑦2)

(0,−𝑥)
⋀︀

− 𝜕𝑙𝑤2
𝑅

(−)

𝑦𝑝−1
1 (𝑦1−𝑦2)

(0,−𝑥)
⃒⃒⃒⃒

+

𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗

)︂ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂
sup
𝑥∈𝐼

⃒⃒⃒⃒
⃒ (︁𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

⋀︀)︁(︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

⋀︀)︁
−
(︀
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

)︀ (︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

)︁ ⃒⃒⃒⃒⃒. (74)

The term under the sum can further be upper bounded as

sup
𝑥∈𝐼

⃒⃒⃒⃒
⃒ (︁𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

⋀︀)︁(︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

⋀︀)︁
−
(︀
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

)︀ (︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

)︁ ⃒⃒⃒⃒⃒
≤ sup

𝑥∈𝐼

⃒⃒⃒
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

⃒⃒⃒
sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

⃒⃒⃒
+ sup

𝑥∈𝐼

⃒⃒⃒
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

⋀⃒︀⃒⃒
sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗
1

(𝑥− ℎ)|ℎ=0

⃒⃒⃒
= 𝑂(1)𝑂𝑎.𝑠. (𝛿𝑖,𝑁) +𝑂𝑎.𝑠.(1)𝑂𝑎.𝑠. (𝛿𝑙−𝑖,𝑁) , (75)

where we use the inductive assumption and lemma D.3. Observe that 𝛿𝑗,𝑁 = 𝑜(𝛿𝑗+1,𝑁)

under the assumptions of the theorem. We conclude that (73) holds for 𝜕𝑙ℎ𝜈𝑢𝑝1(𝑥− ℎ)
⋀︀

|ℎ=0 by
combining together eqs. (71), (74), and (75). The argument is analogous for moments of 𝑢2
and 𝑚.
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IV Now we establish convergence rates of the estimator 𝜈(𝑢2−𝑢1)𝑝(𝑥, ℎ) for 𝑝 ∈ {0, 1, . . . , 𝑘}.
First, note that the 𝑙th derivative of 𝜈(𝑢2−𝑢1)𝑝(𝑥, ℎ) with respect to ℎ is given by

𝜕𝑙ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, ℎ) =

𝑝∑︁
𝑗=0

(︂
𝑝

𝑗

)︂[︃ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)
)︁(︁

𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗
2

(𝑥+ ℎ)
)︁]︃

.

The estimator 𝜕𝑙ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, 0)
⋀︀

replaces all population objects on the right hand side above
with their sample versions, in line with the algorithm 1. Correspondingly, the estimation
error error at ℎ = 0 can be bounded as

sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, 0)
⋀︀

− 𝜕𝑙ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, 0)
⃒⃒⃒

≤
𝑝∑︁
𝑗=0

(︂
𝑝

𝑗

)︂ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂
sup
𝑥∈𝐼

⃒⃒⃒⃒
⃒ (︁𝜕𝑖ℎ𝜈𝑢𝑗1(𝑥− ℎ)|ℎ=0

⋀︀)︁(︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

⋀︀)︁
−
(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

)︁(︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

)︁ ⃒⃒⃒⃒⃒. (76)

Each term under the sums can be further bounded as

sup
𝑥∈𝐼

⃒⃒⃒⃒
⃒ (︁𝜕𝑖ℎ𝜈𝑢𝑗1(𝑥− ℎ)|ℎ=0

⋀︀)︁(︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

⋀︀)︁
−
(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

)︁(︁
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

)︁ ⃒⃒⃒⃒⃒
≤ sup

𝑥∈𝐼

⃒⃒⃒
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

⃒⃒⃒
sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

⋀︀

− 𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗
2

(𝑥+ ℎ)|ℎ=0

⃒⃒⃒
+ sup

𝑥∈𝐼

⃒⃒⃒
𝜕𝑙−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

⋀⃒︀⃒⃒
sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑖ℎ𝜈𝑢𝑗1
(𝑥− ℎ)|ℎ=0

⃒⃒⃒
= 𝑂(1)𝑂𝑎.𝑠.(𝛿𝑙−𝑖,𝑁) +𝑂𝑎.𝑠.(1)𝑂𝑎.𝑠.(𝛿𝑖,𝑁). (77)

It now follows from 𝛿𝑗,𝑁 = 𝑜(𝛿𝑗+1,𝑁) and eqs. (73), (76), and (77) that

sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, 0)
⋀︀

− 𝜕𝑙ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, 0)
⃒⃒⃒
= 𝑂𝑎.𝑠.(𝛿𝑙,𝑁). (78)

V Recall that 𝐷𝑝(𝑥, ℎ) = E [(𝑚(𝑥0 + ℎ, 𝛼𝑖)−𝑚(𝑥0 − ℎ, 𝛼𝑖))
𝑝|𝐵𝑥0−ℎ,2ℎ] (see eq. (47)). Using

eq. (14) and the above notation, we can write the 𝑙th derivative of 𝐷𝑝 as

𝜕𝑙ℎ𝐷𝑝(𝑥, ℎ) = 𝜕𝑙𝑤2
𝑅

(Δ)
(𝑦2−𝑦1)𝑝(𝑥, ℎ)
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−
𝑝−1∑︁
𝑗=0

(︂
𝑝

𝑗

)︂[︃ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂(︀
𝜕𝑖ℎ𝐷𝑗(𝑥, ℎ)

)︀ (︀
𝜕𝑙−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, ℎ)

)︀]︃
,

The estimator 𝜕𝑙ℎ𝐷𝑝(𝑥, 0)
⋀︀

replaces all population objects on the right hand side with their
sample versions (see algorithm 1).

We assert that for each 𝑝 ∈ {0, 1, . . . , 𝑘} it holds for all 𝑙 ∈ {0, 1, . . . , 𝑘} that

sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙ℎ𝐷𝑝(𝑥, 0)
⋀︀

− 𝜕𝑙ℎ𝐷𝑝(𝑥, 0)
⃒⃒⃒
= 𝑂𝑎.𝑠.(𝛿𝑙,𝑁) (79)

The estimation error can be bounded as

sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙ℎ𝐷𝑝(𝑥, 0)
⋀︀

− 𝜕𝑙ℎ𝐷𝑝(𝑥, 0)
⃒⃒⃒

≤ sup
𝑥∈𝐼

⃒⃒⃒⃒
𝜕𝑙𝑤2

𝑅
(Δ)
(𝑦2−𝑦1)𝑝(𝑥, 0)

⋀︀

− 𝜕𝑙𝑤2
𝑅

(Δ)
(𝑦2−𝑦1)𝑝(𝑥, 0)

⃒⃒⃒⃒
+

𝑝−1∑︁
𝑗=0

(︂
𝑝

𝑗

)︂ 𝑙∑︁
𝑖=0

(︂
𝑙

𝑖

)︂
sup
𝑥∈𝐼

⃒⃒⃒⃒
⃒ (︁𝜕𝑖ℎ𝐷𝑗(𝑥, 0)
⋀︀)︁(︁

𝜕𝑙−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
⋀︀)︁

−
(︀
𝜕𝑖ℎ𝐷𝑗(𝑥, 0)

)︀ (︀
𝜕𝑙−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)

)︀ ⃒⃒⃒⃒⃒ (80)

The term under the sums can be bounded from above as

sup
𝑥∈𝐼

⃒⃒⃒⃒
⃒ (︁𝜕𝑖ℎ𝐷𝑗(𝑥, 0)
⋀︀)︁(︁

𝜕𝑙−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
⋀︀)︁

−
(︀
𝜕𝑖ℎ𝐷𝑗(𝑥, 0)

)︀ (︀
𝜕𝑙−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)

)︀ ⃒⃒⃒⃒⃒
≤ sup

𝑥∈𝐼

⃒⃒⃒
𝜕𝑙−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
⋀⃒︀⃒⃒

sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑖ℎ𝐷𝑗(𝑥, 0)
⋀︀

− 𝜕𝑖ℎ𝐷𝑗(𝑥, 0)
⃒⃒⃒

+ sup
𝑥∈𝐼

⃒⃒
𝜕𝑖ℎ𝐷𝑗(𝑥, 0)

⃒⃒
sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑙−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
⋀︀

− 𝜕𝑙−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
⃒⃒⃒

= 𝑂𝑎.𝑠.(1)𝑂𝑎.𝑠.(𝛿𝑖,𝑁) +𝑂(1)𝑂𝑎.𝑠.(𝛿𝑙−𝑖,𝑁). (81)

(79) now follows from eqs. (71), (80), and (81).

Finally, by theorem 3.1 and by definition of �̂�𝑘(𝑥) we have that

𝜇𝑘(𝑥) =
1

2𝑘𝑘!
𝜕𝑘ℎ𝐷𝑘(𝑥, 0), �̂�𝑘(𝑥) =

1

2𝑘𝑘!
𝜕𝑘ℎ𝐷𝑘(𝑥, 0)
⋀︀

.
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Then
sup
𝑥∈𝐼

|�̂�𝑘(𝑥)− 𝜇𝑘(𝑥)| =
1

2𝑘𝑘!
sup
𝑥∈𝐼

⃒⃒⃒
𝜕𝑘ℎ𝐷𝑘(𝑥, 0)
⋀︀

− 𝜕𝑘ℎ𝐷𝑘(𝑥, 0)
⃒⃒⃒
= 𝑂𝑎.𝑠.(𝛿𝑘,𝑁),

establishing the result of the theorem.

G Proof of Theorem 4.2

G.1 Supporting Lemmas

In order to establish asymptotic normality of the moment estimator �̂�𝑘(𝑥), we first establish
that the underlying local polynomial estimators of conditional moments of (𝑌𝑖1, 𝑌𝑖2) and their
derivatives are also asymptotically normally distributed. It is convenient to establish joint
asymptotic normality of all the LP(𝑞) estimators involved.

We first introduce some notation. Let 𝒢𝑘 be defined as in eq. (52). Let 𝑘 and 𝑥 be

as in theorem 4.2. Let the vector 𝑉𝒢𝑘
(𝑥) stack all the 𝜕𝑘𝑤2

𝑅
(Δ)
𝑔 (𝑥, 0)

⋀︀

, 𝜕𝑘𝑤2
𝑅

(−)
𝑔 (0,−𝑥)
⋀︀

, and

𝜕𝑘𝑤2
𝑅

(+)
𝑔 (0, 𝑥)

⋀︀

that appear in the proof of theorem 4.1. Let 𝑉𝒢𝑘
(𝑥) be its population counterpart.

Formally, number the elements of 𝒢𝑘 as {𝑔1, . . . , 𝑔|𝒢𝑘|}. Let 𝑉𝒢𝑘
(𝑥) be a 3|𝒢𝑘|-vector with the

𝑗th element given by 𝜕𝑘𝑤2
𝑅

(Δ)
𝑔𝑗 (𝑥, 0)

⋀︀

; the (|𝒢𝑘|+ 𝑗)th element given by 𝜕𝑘𝑤2
𝑅

(−)
𝑔𝑗 (0,−𝑥)
⋀︀

; and the

(2|𝒢𝑘|+ 𝑗)th element given by 𝜕𝑘𝑤2
𝑅

(−)
𝑔 (0, 𝑥)

⋀︀

. Similarly, let 𝑉𝒢𝑘
(𝑥) be a 3|𝒢𝑘|-vector with the

𝑗th element given by 𝜕𝑘𝑤2
𝑅

(Δ)
𝑔𝑗 (𝑥, 0); the (|𝒢𝑘| + 𝑗)th element given by 𝜕𝑘𝑤2

𝑅
(−)
𝑔𝑗 (0,−𝑥); and

the (2|𝒢𝑘|+ 𝑗)th element given by 𝜕𝑘𝑤2
𝑅

(−)
𝑔 (0, 𝑥)

Lemma G.1. Let the assumption of theorem 4.2 hold. Let 𝐿 <∞ be a fixed integer. For 𝑙 =
1, . . . , 𝐿 let 𝑥𝑙 ∈ 𝐼. Then the vector

√
𝑁𝑠2+2𝑘[(𝑉𝒢𝑘

(𝑥1)−𝑉𝒢𝑘
(𝑥1))

′, . . . , (𝑉𝒢𝑘
(𝑥𝐿)−𝑉𝒢𝑘

(𝑥𝐿))
′]′

converges weakly to a mean-zero normally distributed random vector. Further, if 𝑙 ̸= 𝑗,
then

√
𝑁𝑠2+2𝑘(𝑉𝒢𝑘

(𝑥𝑙) − 𝑉𝒢𝑘,𝑁(𝑥𝑙)) and
√
𝑁𝑠2+2𝑘(𝑉𝒢𝑘

(𝑥𝑗) − 𝑉𝒢𝑘
(𝑥𝑗)) are asymptotically

independent.

Proof. We establish convergence by theorem 5 of Masry (1996b), whose conditions we now
briefly verify. The conditions overlap significantly with the conditions of theorem 6 of Masry
(1996a) used in the proof of theorem 4.1, and we refer to that proof for some additional
details.
• Conditions (1a) and (2a) follow from assumption 4.1 on the kernel Ψ𝐿𝑃 . Condition (1b)

follow from assumption D.2. Condition (1c) holds as {(𝑌𝑖,𝑋𝑖)} is iid over 𝑖.
• Condition (2b) follows from lemma D.1. The moment condition of (2c) holds as in the

proof of theorem 4.1: for any 𝑔 ∈ 𝒢𝑘 it holds that sup𝑥∈𝐽 E
[︀
|𝑔(𝑌𝑖1, 𝑌𝑖2)|2+𝛿

′ |𝑋𝑖 = 𝑥
]︀
<∞,

where 𝛿′ = 𝛿/𝑘 > 0 for the 𝛿 of the theorem statement (see eq. (70) and the preceding
discussion).
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• Condition (3) holds by the assumptions of the theorem on 𝑠.
• Condition (4) holds by lemma D.1.
• The differentiability requirement on p. 83 for 𝑟𝑔 holds as each 𝑟𝑔 is differentiable at least
(𝑞 + 2) times by lemma D.2.

Asymptotic normality now follows by theorem theorem 5 of Masry (1996b).6 The requirement
that 𝑁𝑠2𝑘+4 → 0 eliminates the bias and ensures that the limit distribution is centered at
zero. Independence holds by a standard argument (see e.g. p. 113 in Bierens (1987)).

We now establish asymptotic normality of the components of the moment estimator. The
results are intuitive, as the 𝜈· estimators are built up as differentiable transformations of
moments of 𝑌 .

Define 𝑉𝑢1,𝑝(𝑥) as a (𝑝 + 1)-vector with 𝑗th element given by 𝜕𝑘ℎ𝜈𝑢𝑗−1
1

(𝑥− ℎ)|ℎ=0

⋀︀

. Let
𝑉𝑢1,𝑝(𝑥) be a (𝑝 + 1)-vector with the 𝑗th element given by 𝜕𝑘ℎ𝜈𝑢𝑗−1

1
(𝑥 − ℎ)|ℎ=0. Similarly,

define 𝑉𝑢2,𝑝(𝑥) as a (𝑝 + 1)-vector with the 𝑗th element 𝜕𝑘ℎ𝜈𝑢𝑗−1
2

(𝑥+ ℎ)|ℎ=0

⋀︀

and 𝑉𝑢2,𝑝(𝑥) as
the (𝑝+ 1)-vector with the 𝑗th element 𝜕𝑘ℎ𝜈𝑢𝑗−1

2
(𝑥+ ℎ)|ℎ=0.

Lemma G.2. Let the assumptions of theorem 4.2 holds. Then
√
𝑁𝑠2+2𝑘

(︀
(𝑉𝑢1,𝑘(𝑥)−𝑉𝑢1,𝑘(𝑥))

′,

(𝑉𝑢2,𝑘(𝑥)− 𝑉𝑢2,𝑘(𝑥))
′)︀ weakly converges to a mean zero normally distributed random vector.

Convergence is joint with the vector
√
𝑁𝑠2+2𝑘(𝑉𝒢𝑘

(𝑥)− 𝑉𝒢𝑘
(𝑥)) of lemma G.1.

Proof. It will be convenient to prove a slightly stronger assertion. First, let 𝑉
(+)
𝑚,𝑝 (𝑥) be

a (𝑝 + 1)-vector with the 𝑗th element given by 𝜕𝑘ℎ𝜈𝑚𝑗−1(𝑥+ ℎ)|ℎ=0

⋀︀

, and 𝑉
(+)
𝑚,𝑝 (𝑥) be its

population equivalent. Similarly, define 𝑉
(−)
𝑚,𝑝 (𝑥) as the (𝑝+ 1)-vector with the 𝑗th element

𝜕𝑘ℎ𝜈𝑚𝑗−1(𝑥− ℎ)|ℎ=0

⋀︀

and 𝑉
(−)
𝑚,𝑝 (𝑥) as its population equivalent.7 Then we assert that for every

𝑝 = 0, 1, . . . , 𝑘 the vector
√
𝑁𝑠2+2𝑘

(︀
(𝑉𝑢1,𝑝(𝑥) − 𝑉𝑢1,𝑝(𝑥))

′, (𝑉𝑢2,𝑝(𝑥) − 𝑉𝑢2,𝑝(𝑥))
′, (𝑉

(±)
𝑚,𝑝 (𝑥) −

𝑉
(±)
𝑚,𝑝 (𝑥))′

)︁
weakly converges to a mean zero normally distributed random vector, jointly with

√
𝑁𝑠2+2𝑘(𝑉𝒢𝑘

(𝑥)− 𝑉𝒢𝑘
(𝑥)).

We show the assertion by finite induction on 𝑝. The assertion is trivial is for 𝑝 = 0.
Consider 𝑝 = 1. Then

√
𝑁𝑠2+2𝑘(𝑉𝑢1,1(𝑥)− 𝑉𝑢1,1(𝑥)) =

√
𝑁𝑠2+2𝑘(𝑉𝑢2,1(𝑥)− 𝑉𝑢2,1(𝑥)) = 0,

6Theorem 5 of Masry (1996b) is stated for the case of estimating one conditional moment. However, it
extends immediately to establishing joint normality of a fixed finite collection of conditional moments by an
application of the Cramér-Wold device.

7Note that 𝜕𝑘ℎ𝜈𝑚𝑝(𝑥− ℎ)|ℎ=0 = (−1)𝑘𝜕𝑘ℎ𝜈𝑚𝑝(𝑥+ ℎ)|ℎ=0. We can then consider only 𝜈𝑚𝑝(𝑥+ ℎ) if Ψ𝐿𝑃 is
a product kernel of the form Ψ𝐿𝑃 = Ψ2

1𝑑 where Ψ1𝑑 is a symmetric kernel, as the local polynomial estimators
of the derivatives will satisfy the same property as the population derivatives.
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and

√
𝑁𝑠2+2𝑘(𝑉𝑚,1(𝑥)− 𝑉𝑚,1(𝑥)) =

⎛⎝ 0
√
𝑁𝑠2+2𝑘

(︂
𝜕𝑙𝑤2

𝑅
(+)
𝑦1𝑦2(0, 𝑥)

⋀︀

− 𝜕𝑙𝑤2
𝑅

(+)
𝑦1𝑦2(0, 𝑥)

)︂⎞⎠ .

The assertion then follows immediately from lemma G.1.
Now suppose that the assertion is true up to 𝑝− 1. Consider 𝑝 ≤ 𝑘. Then consider the

last element of 𝑉𝑢1,𝑝, corresponding to the 𝑘th derivative of 𝜈𝑢𝑝1 . As in the proof of theorem
4.1, the following representation holds:

√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘ℎ𝜈𝑢𝑝1(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑘ℎ𝜈𝑢𝑝1(𝑥− ℎ)|ℎ=0

)︁
=

√
𝑁𝑠2+2𝑘

(︂
𝜕𝑘𝑤2

𝑅
(−)

𝑦𝑝−1
1 (𝑦1−𝑦2)

(0,−𝑥)
⋀︀

− 𝜕𝑘𝑤2
𝑅

(−)

𝑦𝑝−1
1 (𝑦1−𝑦2)

(0,−𝑥)
)︂

+

𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗

)︂ 𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂√
𝑁𝑠2+2𝑘

(︃(︁
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

⋀︀)︁(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

⋀︀)︁
−
(︀
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

)︀ (︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

)︁)︃

=
√
𝑁𝑠2+2𝑘

(︂
𝜕𝑘𝑤2

𝑅
(−)

𝑦𝑝−1
1 (𝑦1−𝑦2)

(0,−𝑥)
⋀︀

− 𝜕𝑘𝑤2
𝑅

(−)

𝑦𝑝−1
1 (𝑦1−𝑦2)

(0,−𝑥)
)︂

+

𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗

)︂ 𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

⋀︀)︁
×

(︃
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

)︃

+

𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗

)︂ 𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂√
𝑁𝑠2+2𝑘

(︀
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

)︀
×

(︃
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗
1

(𝑥− ℎ)|ℎ=0

)︃
. (82)

Consider the (𝑗, 𝑖)th term in the first term with 𝑖 < 𝑘. By eq. (73) in the proof theorem 4.2
it satisfies

√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

⋀︀)︁(︃
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

)︃

=
√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

)︁(︃
𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑖ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

)︃
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+
√
𝑁𝑠2+2𝑘𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2(𝑘−𝑖) + 𝑠𝑞−(𝑘−𝑖)+1

)︃
𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2𝑖
+ 𝑠𝑞−𝑖+1

)︃

=
√
𝑁𝑠2+2𝑘𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2𝑖
+ 𝑠𝑞−𝑖+1

)︃

+
√
𝑁𝑠2+2𝑘𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2(𝑘−𝑖) + 𝑠𝑞−(𝑘−𝑖)+1

)︃
𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2𝑖
+ 𝑠𝑞−𝑖+1

)︃
= 𝑜𝑎.𝑠.(1),

where the last equality holds by the assumption that 𝑁𝑠2𝑞+4 → 0 and 𝑠2 log(𝑁) → 0. We
conclude that all the terms in the first sum of eq. (82) with 𝑖 < 𝑘 are 𝑜𝑎.𝑠.(1). Analogously,
all the terms in the second sum of eq. (82) with 𝑖 > 0 are 𝑜𝑎.𝑠.(1).

In light of this, we can write
√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘ℎ𝜈𝑢𝑝1(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑘ℎ𝜈𝑢𝑝1(𝑥− ℎ)|ℎ=0

)︁
+ 𝑜𝑎.𝑠.(1) (83)

=
√
𝑁𝑠2+2𝑘

(︂
𝜕𝑘𝑤2

𝑅
(−)

𝑦𝑝−1
1 (𝑦1−𝑦2)

(0,−𝑥)
⋀︀

− 𝜕𝑘𝑤2
𝑅

(−)

𝑦𝑝−1
1 (𝑦1−𝑦2)

(0,−𝑥)
)︂

+

𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗

)︂√
𝑁𝑠2+2𝑘

(︁
𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

)︁(︃
𝜕𝑘ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑘ℎ𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0

)︃

+

𝑝−1∑︁
𝑗=1

(︂
𝑝− 1

𝑗

)︂√
𝑁𝑠2+2𝑘 (𝜈𝑚𝑗(𝑥− ℎ)|ℎ=0)

(︃
𝜕𝑘ℎ𝜈𝑢𝑝−𝑗

1
(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑘ℎ𝜈𝑢𝑝−𝑗
1

(𝑥− ℎ)|ℎ=0

)︃
.

Similar representations hold for 𝜕𝑘ℎ𝜈𝑢𝑝2(𝑥+ ℎ)|ℎ=0

⋀︀

and 𝜕𝑘ℎ𝜈𝑚𝑝(𝑥± ℎ)|ℎ=0

⋀︀

.
We conclude that that

√
𝑁𝑠2+2𝑘

(︀
(𝑉𝑢1,𝑝(𝑥)− 𝑉𝑢1,𝑝(𝑥))

′, (𝑉𝑢2,𝑝(𝑥)− 𝑉𝑢2,𝑝(𝑥))
′, (𝑉

(±)
𝑚,𝑝 (𝑥)−

𝑉
(±)
𝑚,𝑝 (𝑥))′

)︁
can be written as a smooth transformation of

√
𝑁𝑠2+2𝑘

(︀
(𝑉𝑢1,𝑝−1(𝑥)−𝑉𝑢1,𝑝−1(𝑥))

′,

(𝑉𝑢2,𝑝−1(𝑥)−𝑉𝑢2,𝑝−1(𝑥))
′, (𝑉

(±)
𝑚,𝑝−1(𝑥)−𝑉

(±)
𝑚,𝑝−1(𝑥))

′
)︁

and
√
𝑁𝑠2+2𝑘(𝑉𝒢𝑘

(𝑥)−𝑉𝒢𝑘
(𝑥)), plus an

𝑜𝑎.𝑠.(1) component. The assertion then immediately follows by the delta method from the
inductive assumption.

We now transfer the convergence results of lemma G.2 to estimates of the 𝑘th derivatives
of 𝜈(𝑢2−𝑢1)𝑗(𝑥, ℎ).

Define 𝑉𝑢2−𝑢1,𝑘(𝑥) as a (𝑘 + 1)-vector with 𝑗th element given by 𝜕𝑘ℎ𝜈(𝑢2−𝑢1)𝑗−1(𝑥, ℎ)|ℎ=0

⋀︀

.
Let 𝑉𝑢2−𝑢1,𝑘(𝑥) be a (𝑝+ 1)-vector with the 𝑗th element given by 𝜕𝑘ℎ𝜈(𝑢2−𝑢1)𝑗−1(𝑥, ℎ)|ℎ=0.

Lemma G.3. Let assumptions of theorem 4.2 hold. Then the vector
√
𝑁𝑠2+2𝑘

(︀
𝑉𝑢2−𝑢1,𝑘(𝑥)−

𝑉𝑢2−𝑢1,𝑘(𝑥, ℎ)
)︀

weakly converges to a mean-zero normally distributed random vector. Conver-
gence is joint with the vector

√
𝑁𝑠2+2𝑘(𝑉𝒢𝑘

(𝑥)− 𝑉𝒢𝑘
(𝑥)) of lemma G.1.
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Proof. Consider the (𝑝+ 1)st element of
√
𝑁𝑠2+2𝑘

(︁
𝑉𝑢2−𝑢1,𝑘(𝑥)− 𝑉𝑢2−𝑢1,𝑘(𝑥, ℎ)

)︁
:

√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, 0)
⋀︀

− 𝜕𝑘ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, 0)
)︁

=

𝑝∑︁
𝑗=0

(︂
𝑝

𝑗

)︂ 𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂√
𝑁𝑠2+2𝑘

[︃(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

⋀︀)︁(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

⋀︀)︁
−
(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

)︁(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

)︁]︃

=

𝑝∑︁
𝑗=0

(︂
𝑝

𝑗

)︂ 𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂√
𝑁𝑠2+2𝑘

(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

)︁
×
(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

⋀︀

− 𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗
2

(𝑥+ ℎ)|ℎ=0

)︁
+

𝑝∑︁
𝑗=0

(︂
𝑝

𝑗

)︂ 𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

⋀︀)︁
×
(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑖ℎ𝜈𝑢𝑗1
(𝑥− ℎ)|ℎ=0

)︁
Consider the (𝑗, 𝑖)th term in the second sum with 𝑖 < 𝑘. Exactly as in the proof of lemma
G.3 it holds that

√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

⋀︀)︁(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑖ℎ𝜈𝑢𝑗1
(𝑥− ℎ)|ℎ=0

)︁
=

√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

⋀︀)︁(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑖ℎ𝜈𝑢𝑗1
(𝑥− ℎ)|ℎ=0

)︁
+
√
𝑁𝑠2+2𝑘𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2(𝑘−𝑖) + 𝑠𝑞−(𝑘−𝑖)+1

)︃
𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2𝑖
+ 𝑠𝑞−𝑖+1

)︃

=
√
𝑁𝑠2+2𝑘𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2𝑖
+ 𝑠𝑞−𝑖+1

)︃

+
√
𝑁𝑠2+2𝑘𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2(𝑘−𝑖) + 𝑠𝑞−(𝑘−𝑖)+1

)︃
𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2𝑖
+ 𝑠𝑞−𝑖+1

)︃
= 𝑜𝑎.𝑠.(1).

A similar result applies to the all the terms in the first sum with 𝑖 > 0. It follows that
√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, 0)
⋀︀

− 𝜕𝑘ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, 0)
)︁
+ 𝑜𝑎.𝑠.(1) (84)

=

𝑝∑︁
𝑗=0

(︂
𝑝

𝑗

)︂√
𝑁𝑠2+2𝑘

(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

)︁(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

⋀︀

− 𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗
2

(𝑥+ ℎ)|ℎ=0

)︁
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+

𝑝∑︁
𝑗=0

(︂
𝑝

𝑗

)︂√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘−𝑖ℎ 𝜈𝑢𝑝−𝑗

2
(𝑥+ ℎ)|ℎ=0

)︁(︁
𝜕𝑖ℎ𝜈𝑢𝑗1

(𝑥− ℎ)|ℎ=0

⋀︀

− 𝜕𝑖ℎ𝜈𝑢𝑗1
(𝑥− ℎ)|ℎ=0

)︁
The above expression shows that

√
𝑁𝑠2+2𝑘

(︀
𝑉𝑢2−𝑢1,𝑘(𝑥)− 𝑉𝑢2−𝑢1,𝑘(𝑥, ℎ)

)︀
is a smooth trans-

formation of the vector
√
𝑁𝑠2+2𝑘

(︀
(𝑉𝑢1,𝑘(𝑥)− 𝑉𝑢1,𝑘(𝑥))

′, (𝑉𝑢2,𝑘(𝑥)− 𝑉𝑢2,𝑘(𝑥))
′)︀ of lemma G.2,

plus an 𝑜𝑎.𝑠.(1) component. The assertion of the lemma follows by the delta method and
lemma G.2.

As the final building block, we now establish asymptotic normality of the estimator
𝜕𝑘ℎ𝐷𝑘(𝑥, 0)
⋀︀

of 𝜕𝑘ℎ𝐷𝑘(𝑥, 0), leveraging lemmas G.1 and G.3.

Lemma G.4. Let the assumptions of theorem 4.2 hold. Then
√
𝑁𝑠2+2𝑘

(︀
𝜕𝑘ℎ𝐷𝑘(𝑥, 0)
⋀︀

−
𝜕𝑘ℎ𝐷𝑘(𝑥, 0)

)︀
converges weakly to a mean-zero normally distributed random variable.

Proof. We prove a slightly stronger result. Let 𝑉𝐷,𝑝(𝑥) be a 𝑝-vector with 𝑗th element given
by 𝜕𝑘ℎ𝐷𝑗(𝑥, 0)
⋀︀

. Similarly, let 𝑉𝐷,𝑝(𝑥) be a 𝑝-vector with 𝑗th element 𝜕𝑘ℎ𝐷𝑗(𝑥, 0). We claim
that

√
𝑁𝑠2+2𝑘

(︁
𝑉𝐷,𝑝(𝑥)− 𝑉𝐷,𝑝(𝑥)

)︁
weakly converges to a mean zero normally distributed

random vector for all 𝑝 = 1, . . . , 𝑘, jointly with the vectors
√
𝑁𝑠2+2𝑘(𝑉𝒢𝑘

(𝑥) − 𝑉𝒢𝑘
(𝑥)) of

lemma G.1 and
√
𝑁𝑠2+2𝑘

(︀
𝑉𝑢2−𝑢1,𝑘(𝑥)− 𝑉𝑢2−𝑢1,𝑘(𝑥, ℎ)

)︀
of lemma G.3.

The proof is by (finite) induction on 𝑝. The result is immediate for 𝑝 = 1, as

√
𝑁𝑠2+2𝑘

(︁
𝑉𝐷,1,𝑘(𝑥)− 𝑉𝐷,1,𝑘(𝑥)

)︁
=

√
𝑁𝑠2+2𝑘

(︂
𝑅

(Δ)
(𝑦2−𝑦1)(𝑥, 0)

⋀︀

−𝑅
(Δ)
(𝑦2−𝑦1)(𝑥, 0)

)︂
.

The result then immediately follows from lemma G.1.
Now suppose that the result holds up to 𝑝 − 1, 𝑝 ≤ 𝑘. The 𝑘th derivatives of 𝐷𝑝(𝑥, ℎ)

can be represented as
√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘ℎ𝐷𝑝(𝑥, 0)
⋀︀

− 𝜕𝑘ℎ𝐷𝑝(𝑥, 0)
)︁

=
√
𝑁𝑠2+2𝑘

(︂
𝜕𝑘𝑤2

𝑅
(Δ)
(𝑦2−𝑦1)𝑝(𝑥, 0)

⋀︀

− 𝜕𝑘𝑤2
𝑅

(Δ)
(𝑦2−𝑦1)𝑝(𝑥, 0)

)︂
+

𝑝−1∑︁
𝑗=0

(︂
𝑝

𝑗

)︂ 𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂√
𝑁𝑠2+2𝑘

[︃(︁
𝜕𝑖ℎ𝐷𝑗(𝑥, 0)
⋀︀)︁(︁

𝜕𝑘−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
⋀︀)︁

−
(︀
𝜕𝑖ℎ𝐷𝑗(𝑥, 0)

)︀ (︀
𝜕𝑘−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)

)︀ ]︃

=
√
𝑁𝑠2+2𝑘

(︂
𝜕𝑘𝑤2

𝑅
(Δ)
(𝑦2−𝑦1)𝑝(𝑥, 0)

⋀︀

− 𝜕𝑘𝑤2
𝑅

(Δ)
(𝑦2−𝑦1)𝑝(𝑥, 0)

)︂
+

𝑝−1∑︁
𝑗=0

(︂
𝑝

𝑗

)︂ 𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂√
𝑁𝑠2+2𝑘

(︁
𝜕𝑖ℎ𝐷𝑗(𝑥, 0)
⋀︀)︁(︁

𝜕𝑘−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
⋀︀

− 𝜕𝑘−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
)︁
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+

𝑝−1∑︁
𝑗=0

(︂
𝑝

𝑗

)︂ 𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂√
𝑁𝑠2+2𝑘

(︀
𝜕𝑘−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)

)︀ (︁
𝜕𝑖ℎ𝐷𝑗(𝑥, 0)
⋀︀

− 𝜕𝑖ℎ𝐷𝑗(𝑥, 0)
)︁
.

Consider the (𝑗, 𝑖)th term in first sum for 𝑖 > 0. Analogously to the proof of lemma G.2, we
obtain by eq. (78) that

√
𝑁𝑠2+2𝑘

(︁
𝜕𝑖ℎ𝐷𝑗(𝑥, 0)
⋀︀)︁(︁

𝜕𝑘−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
⋀︀

− 𝜕𝑘−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
)︁

=
√
𝑁𝑠2+2𝑘

(︀
𝜕𝑖ℎ𝐷𝑗(𝑥, 0)

)︀ (︁
𝜕𝑘−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
⋀︀

− 𝜕𝑘−𝑖ℎ 𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
)︁

+
√
𝑁𝑠2+2𝑘𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2(𝑘−𝑖) + 𝑠𝑞−(𝑘−𝑖)+1

)︃
𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2𝑖
+ 𝑠𝑞−𝑖+1

)︃

=
√
𝑁𝑠2+2𝑘𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2(𝑘−𝑖) + 𝑠𝑞−(𝑘−𝑖)+1

)︃

+
√
𝑁𝑠2+2𝑘𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2(𝑘−𝑖) + 𝑠𝑞−(𝑘−𝑖)+1

)︃
𝑂𝑎.𝑠.

(︃√︂
log(𝑁)

𝑁𝑠2+2𝑖
+ 𝑠𝑞−𝑖+1

)︃
= 𝑜𝑎.𝑠.(1).

It then holds that
√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘ℎ𝐷𝑝(𝑥, 0)
⋀︀

− 𝜕𝑘ℎ𝐷𝑝(𝑥, 0)
)︁
+ 𝑜𝑎.𝑠.(1) (85)

=
√
𝑁𝑠2+2𝑘

(︂
𝜕𝑘𝑤2

𝑅
(Δ)
(𝑦2−𝑦1)𝑝(𝑥, 0)

⋀︀

− 𝜕𝑘𝑤2
𝑅

(Δ)
(𝑦2−𝑦1)𝑝(𝑥, 0)

)︂
+

𝑝−1∑︁
𝑗=0

(︂
𝑝

𝑗

)︂
(𝐷𝑗(𝑥, 0))

√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘ℎ𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
⋀︀

− 𝜕𝑘ℎ𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)
)︁

+

𝑝−1∑︁
𝑗=0

(︂
𝑝

𝑗

)︂(︀
𝜈(𝑢2−𝑢1)𝑝−𝑗(𝑥, 0)

)︀√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘ℎ𝐷𝑗(𝑥, 0)
⋀︀

− 𝜕𝑘ℎ𝐷𝑗(𝑥, 0)
)︁
.

We conclude that the vector
√
𝑁𝑠2+2𝑘

(︁
𝑉𝐷,𝑝(𝑥)− 𝑉𝐷,𝑝,(𝑥)

)︁
is a smooth transformation of

√
𝑁𝑠2+2𝑘

(︀
𝑉𝐷,𝑝−1(𝑥) − 𝑉𝐷,𝑝−1(𝑥)

)︀
,
√
𝑁𝑠2+2𝑘(𝑉𝒢𝑘

(𝑥) − 𝑉𝒢𝑘
(𝑥)), and

√
𝑁𝑠2+2𝑘

(︀
𝑉𝑢2−𝑢1,𝑘(𝑥) −

𝑉𝑢2−𝑢1,𝑘(𝑥, ℎ)
)︀
, plus an 𝑜𝑎.𝑠.(1) term. Asymptotic normality and jointness of convergence now

follows from the inductive assumption, lemmas G.1 and G.3, and the delta method.
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G.2 Proof of Theorem 4.2

Proof of theorem 4.2. Lemma G.4 shows that
√
𝑁𝑠2+2𝑘

(︁
𝜕𝑘ℎ𝐷𝑘(𝑥, 0)
⋀︀

− 𝜕𝑘ℎ𝐷𝑘(𝑥, 0)
)︁

is asymp-
totically normally distributed. The result of the theorem follows as

√
𝑁𝑠2+2𝑘 (�̂�𝑘(𝑥)− 𝜇𝑘(𝑥)) =

1

2𝑘𝑘!

√
𝑁𝑠2

(︁
𝜕𝑘ℎ𝐷𝑘(𝑥, 0)
⋀︀

− 𝜕𝑘ℎ𝐷𝑘(𝑥, 0)
)︁
. (86)

Asymptotic independence of
√
𝑁𝑠2+2𝑘 (�̂�𝑘(𝑥1)− 𝜇𝑘(𝑥1)) and

√
𝑁𝑠2+2𝑘 (�̂�𝑘(𝑥2)− 𝜇𝑘(𝑥2)) for

𝑥1 ̸= 𝑥2 follows from lemma G.1.

Remark 9 (On 𝑉𝑘(𝑥)). An expression for the asymptotic variance 𝑉𝑘(𝑥) of �̂�𝑘(𝑥) may
be obtained from eqs. (85) and (86). Note that all components in eq. (85) are jointly
asymptotically normal. Accordingly, 𝑉𝑘(𝑥) is a sum of variances and covariances of the
estimator for 𝑘th derivatives of expectation of (𝑌𝑖2 − 𝑌𝑖1)

𝑝, the estimators for 𝑘th derivatives
of 𝜈(𝑢2−𝑢1)𝑝 , 𝑝 = 2, . . . , 𝑘 − 1, and the estimators for 𝑘th derivatives of 𝐷𝑝, 𝑝 = 1, . . . , 𝑘 − 1.
There are (2𝑘 − 3)(2𝑘 − 2) such terms in 𝑉𝑘(𝑥). Note that the variances and covariances for
intermediate estimators may be obtained using representations (83), (84), and (85).

Remark 10. A plug-in estimator of 𝑉𝑘(𝑥) may be constructed using its characterization in
the proof of theorem 4.2, and inference may be done using the asymptotic normality result
of eq. (24). However, this approach has two disadvantages relative to the bootstrap. First,
estimators based on such an analytical expression may perform poorly in finite samples. To
see the issue, note that derivatives of all orders up to 𝑘 enter the estimator �̂�𝑘(𝑥), as algorithm
1 makes clear. The asymptotic variance of the derivatives of order 𝑗 < 𝑘 is negligible relative
to that of the 𝑘th derivatives. Correspondingly, lower-order derivative make no contribution
to the asymptotic variance of the moment estimator. However, these derivatives may still
contribute significantly to finite-sample variability. Not accounting for this contribution
may then lead to poor performance of resulting confidence intervals and tests. Second, the
resulting expression for 𝑉𝑘(𝑥) will be complex for 𝑘 ≥ 2. To see see, note that the expression
for �̂�𝑘(𝑥) involves (𝑘+1) 𝑘th derivatives, yielding a total of (𝑘+1)(𝑘+2)/2 distinct variance
and covariance terms. Of these, 𝑘 terms correspond to variances of 𝜕𝑘ℎ𝜈(𝑢2−𝑢1)𝑝(𝑥, 0)

⋀︀

. Each
of these terms in turn relies on 𝑘 𝑘th derivatives of moments of 𝑢𝑖𝑡, which further rely on
additional 𝑘 𝑘th derivatives.8

8For 𝑘 = 1 the estimator satisfies �̂�1(𝑥) =
1
2𝜕

𝑙
ℎ𝑟(𝑦2−𝑦1)(𝑥− ℎ, 𝑥+ ℎ)|ℎ=0

⋀︀

. The asymptotic variance 𝑉1 can
then be obtained fairly straightforwardly from variance expressions for local polynomial estimators.
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H Proof of Theorem 5.1

Define the 𝑝𝑣 × 𝑝𝑣 matrix 𝑀Ψ,𝑝𝑣 as having the (𝑘, 𝑗)th element
∫︀
𝑣𝑘−1Ψ(𝑑(𝑣 − 𝑣𝑗,𝑝)); that is,

the 𝑘th row of 𝑀Ψ,𝑝𝑣 are the (𝑘 − 1)th moments of the individual mixture components.

Lemma H.1. Let assumption 5.1 hold. Then 𝑀𝜓,𝑝𝑣 has rank 𝑝𝑣

Proof. Let 𝜓(𝑣) = Ψ′(𝑣), which exists under assumption 5.1. Define 𝜇𝑗,𝜓 =
∫︀
𝑣𝑗𝜓(𝑣)𝑑𝑣. The

𝑘th moment of the 𝑗th mixture component Ψ(𝑣 − 𝑣𝑗,𝑝𝑣) can be represented as∫︁
𝑣𝑘𝜓(𝑣 − 𝑣𝑗,𝑝𝑣)𝑑𝑣 =

∫︁
((𝑣 − 𝑣𝑗,𝑝𝑣) + 𝑣𝑗,𝑝𝑣)

𝑘𝜓(𝑣 − 𝑣𝑗,𝑝𝑣)𝑑𝑣

=
𝑘∑︁
𝑖=0

𝑣𝑖𝑗,𝑝𝑣

∫︁
(𝑣 − 𝑣𝑗,𝑝𝑣)

𝑘−𝑖𝜓(𝑣 − 𝑣𝑗,𝑝𝑣)𝑑𝑣

=
𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝑣𝜇𝑘−𝑖,𝜓.

∫︀
𝑣𝑘𝜓(𝑣 − 𝑣𝑗,𝑝𝑣)𝑑𝑣 is the (𝑘 + 1, 𝑗)th element of 𝑀Ψ,𝑝𝑣 Accordingly, 𝑀𝜓,𝑝𝑣 may be written

out as

𝑀𝜓,𝑝𝑣 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(︀
0
0

)︀
𝜇0,𝜓 0 · · · 0 0 · · · 0(︀

1
0

)︀
𝜇1,𝜓

(︀
1
1

)︀
𝜇0,𝜓 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...(︀
𝑘
0

)︀
𝜇𝑘,𝜓

(︀
𝑘
1

)︀
𝜇𝑘−1,𝜓 . . .

(︀
𝑘
𝑘

)︀
𝜇0,𝜓 0 . . . 0

...
...

. . .
...

...
. . .

...(︀
𝑝𝑣−1

0

)︀
𝜇𝑝𝑣−1,𝜓

(︀
𝑝𝑣−1

1

)︀
𝜇𝑝𝑣−2,𝜓 · · ·

(︀
𝑝𝑣−1
𝑘

)︀
𝜇𝑝𝑣−1−𝑘,𝜓

(︀
𝑝𝑣−1
𝑘+1

)︀
𝜇𝑝𝑣−2−𝑘,𝜓 · · ·

(︀
𝑝𝑣−1
𝑝𝑣−1

)︀
𝜇0,𝜓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑉

𝑉 :=

⎛⎜⎜⎜⎜⎝
1 1 . . . 1

𝑣1,𝑝𝑣 𝑣2,𝑝𝑣 . . . 𝑣𝑝𝑣,𝑝𝑣
...

...
. . .

...
𝑣𝑝𝑣−1
1,𝑝𝑣

𝑣𝑝𝑣−1
2,𝑝𝑣

. . . 𝑣𝑝𝑣−1
𝑝𝑣,𝑝𝑣

⎞⎟⎟⎟⎟⎠ (87)

As 𝑣𝑖,𝑝𝑣 ̸= 𝑣𝑗,𝑝𝑣 for 𝑖 ̸= 𝑗, the Vandermonde matrix 𝑉 is non-singular. Then 𝑀Ψ,𝑝𝑣 is written
as a product of a lower triangular matrix with ones on the diagonal and a full-rank matrix.
We conclude that 𝑀Ψ,𝑝𝑣 is full rank as well.

Proof of theorem 5.1. Let 𝜌(𝑥) = (𝜌1(𝑥), . . . , 𝜌𝑝𝑣(𝑥)) be a vector of candidate mixing proba-
bilities, that is,

∑︀𝑝𝑣
𝑗=1 𝜌(𝑥) = 1, 𝜌(𝑥) ≥ 0 for all 𝑥 ∈ 𝐼, and each 𝜌 is twice differentiable.

Let 𝜋 be a finite measure on 𝐼 such that the Lebesgue measure is absolutely continuous
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with respect to 𝜋. Consider the following criterion function

�̄�(𝜌(𝑥)) =

∫︁ 𝑝𝑣−1∑︁
𝑘=0

1

𝑘!

[︃
𝜇𝑘(𝑥)−

∫︁
𝑣𝑘

𝑝𝑣∑︁
𝑗=1

𝜌𝑗(𝑥)𝜓(𝑣 − 𝑣𝑗,𝑝𝑣)𝑑𝑣

]︃2
𝜋(𝑑𝑥). (88)

Further, let
Ω = diag{1/0!, 1/1!, . . . , 1/(𝑝𝑣 − 1)!} (89)

Last, note that

𝜇𝑘(𝑥) =

∫︁
𝑣𝑘

𝑝𝑣∑︁
𝑗=1

𝜌0,𝑗(𝑥)𝜓(𝑣 − 𝑣𝑗,𝑝𝑣)𝑑𝑣.

Observe that the objective function can then be written as

�̄�(𝜌) =

∫︁
[𝜌0(𝑥)− 𝜌(𝑥)]′𝑀 ′

Ψ,𝑝𝑣Ω𝑀Ψ,𝑝𝑣 [𝜌0(𝑥)− 𝜌(𝑥)] 𝜋(𝑑𝑥), (90)

where 𝜌0(𝑥) = (𝜌0,𝑝𝑣(𝑥), . . . , 𝜌0,𝑝𝑣(𝑥)) is the vector of true mixing probabilities and the matrix
𝑀Ψ,𝑝𝑣 is defined before lemma H.1.

We show that 𝜌0 is identified as the unique vector of mixing probabilities such that
𝑄(𝜌) = 0. Let 𝜌 be such that 𝑄(𝜌) = 0. By assumption, the integrand in (90) is continuous
and 𝜋(𝐼) is absolutely continuous with respect to the Lebesgue measure. We conclude that
for all 𝑥 it then holds that

[𝜌0(𝑥)− 𝜌(𝑥)]′ 𝑀 ′
Ψ,𝑝𝑣Ω𝑀Ψ,𝑝𝑣 [𝜌0(𝑥)− 𝜌(𝑥)] = 0

By lemma H.1, the matrix 𝑀Ψ,𝑝𝑣 has maximal rank 𝑝𝑣. Correspondingly, 𝑀 ′
Ψ,𝑝𝑣

Ω𝑀Ψ,𝑝𝑣 is
positive definite. We conclude that 𝜌0(𝑥) = 𝜌(0) for all 𝑥 ∈ 𝐼.

I Proof of Theorem 5.2

Proof of theorem 5.2. We only establish the second assertion. The proof of the first one
is analogous, but simpler. Let �̃�𝑝𝑣(𝑥) be the vector of the first 𝑝𝑣 estimated moments of
marginal effects, starting for the zeroth moment, and let 𝜇𝑝𝑣(𝑥) be its population counterpart:

�̃�𝑝𝑣(𝑥) = (�̃�0(𝑥), �̃�1(𝑥), . . . , �̃�𝑝𝑣−1(𝑥))
′,

𝜇𝑝𝑣 = (𝜇0(𝑥), 𝜇1(𝑥), . . . , 𝜇𝑝𝑣−1(𝑥))
′ .

We begin by extending the definition of the objective function (21) to the space of
distributions of assumption 5.1. Let (𝜌1(𝑥), . . . , 𝜌𝑝𝑣(𝑥)) be a vector of mixing probabilities
for 𝑥 ∈ 𝐼, that is, 𝜌𝑗(𝑥) ≥ 0,

∑︀𝑝𝑣
𝑗=1 𝜌𝑗(𝑥) = 1 for all 𝑥 ∈ 𝐼. The sample objective function
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evaluate at a mixture distribution with mixing probabilities 𝜌𝑗(𝑥) is given by

�̂�(𝜌) =

∫︁ 𝑝𝑣−1∑︁
𝑘=0

1

𝑘!

[︃
�̂�𝑘(𝑥)−

∫︁
𝑣𝑘

𝑝𝑣∑︁
𝑗=1

𝜌𝑗(𝑥)𝜓(𝑣 − 𝑣𝑗)𝑑𝑣

]︃2
𝜋(𝑑𝑥)

=

∫︁
[�̂�𝑝𝑣 −𝑀𝜓,𝑝𝑣𝜌(𝑥)]

′ Ω [�̂�𝑝𝑣 −𝑀𝜓,𝑝𝑣𝜌(𝑥)] 𝜋(𝑑𝑥)

where the matrix 𝑀Ψ,𝑝𝑣 is defined before lemma H.1 and Ω is defined in eq. (89). Note
that this agrees with the definition of eq. (21) if 𝜌𝑗 can be written as sums of Bernstein
polynomials.

We now bound the difference between �̂�(𝜌) and the function �̄�(𝜌) of eq. (88) uniformly
in 𝜌 permitted by assumption 5.1:⃒⃒⃒

�̂�(𝜌)− �̄�(𝜌)
⃒⃒⃒

=

⃒⃒⃒⃒
⃒
∫︁ [︁[︁

�̃�𝑝𝑣 −𝑀Ψ,𝑝𝑣𝜌(𝑥)
]︁′
Ω [�̃�𝑝𝑣 −𝑀Ψ,𝑝𝑣𝜌(𝑥)]

− [𝜇𝑝𝑣 −𝑀Ψ,𝑝𝑣𝜌(𝑥)]
′ Ω [𝜇𝑝𝑣 −𝑀Ψ,𝑝𝑣𝜌(𝑥)]

]︁
𝜋(𝑑𝑥)

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒∫︁ [︀
2 [�̃�𝑝𝑣(𝑥)− 𝜇𝑝𝑣(𝑥)]

′Ω𝑀Ψ,𝑝𝑣𝜌(𝑥) + [�̃�𝑝𝑣(𝑥)
′�̃�𝑝𝑣(𝑥)− 𝜇𝑝𝑣(𝑥)

′𝜇𝑝𝑣(𝑥)]
]︀
𝜋(𝑑𝑥)

⃒⃒⃒⃒
≤ 𝜋(𝐼)

[︃
sup
𝑥∈𝐼

‖�̃�𝑝𝑣(𝑥)− 𝜇𝑝𝑣(𝑥)‖∞ ‖Ω‖1 ‖𝑀Ψ,𝑝𝑣‖1 sup
𝑥∈𝐼

‖𝜌(𝑥)‖1

+ sup
𝑥∈𝐼

⃒⃒
‖�̃�𝑝𝑣(𝑥)‖

2
2 − ‖𝜇𝑝𝑣(𝑥)‖

2
2

⃒⃒]︃

≤ 𝜋(𝐼)

[︂
sup
𝑥∈𝐼

‖�̃�𝑝𝑣(𝑥)− 𝜇𝑝𝑣(𝑥)‖∞ ‖Ω‖1 ‖𝑀Ψ,𝑝𝑣‖1 +max
𝑥∈𝐼

⃒⃒
‖�̃�𝑝𝑣(𝑥)‖

2
2 − ‖𝜇𝑝𝑣(𝑥)‖

2
2

⃒⃒]︂
≤ 𝜋(𝐼)

[︂
sup
𝑥∈𝐼

‖�̃�𝑝𝑣(𝑥)− 𝜇𝑝𝑣(𝑥)‖∞ ‖𝑀Ψ,𝑝𝑣‖1 +max
𝑥∈𝐼

⃒⃒
‖�̃�𝑝𝑣(𝑥)‖

2
2 − ‖𝜇𝑝𝑣(𝑥)‖

2
2

⃒⃒]︂
=: 𝜂𝑁 (91)

where we use the fact that

‖𝜌(𝑥)‖1 =
𝑝𝑣∑︁
𝑗=1

|𝜌𝑗(𝑥)| = 1.

𝜂𝑁 is controlled by the errors in the first 𝑝𝑣 moments, uniformly over the space of mixing
probabilities:

𝜂𝑁 = 𝑂𝑎.𝑠.

(︂
max

𝑘=1,...,𝑝𝑣−1
{𝛿𝑘,𝑁}

)︂
. (92)
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Approximation (20) models mixing probabilities 𝜌(𝑥) using Bernstein polynomials of
order 𝑝𝑥. Correspondingly, define the 𝑝𝑣-vector 𝐵(𝛾, 𝑥) as

𝐵(𝛾, 𝑥) =

(︃
𝑝𝑥∑︁
𝑙=0

𝛾1,𝑙𝑏𝑙,𝑝𝑥(𝑥), . . . ,

𝑝𝑥∑︁
𝑙=0

𝛾𝑝𝑣 ,𝑙𝑏𝑙,𝑝𝑥(𝑥)

)︃′

where 𝛾 is as 𝑝𝑣 × (𝑝𝑥 + 1) matrix that satisfies
∑︀𝑝𝑣

𝑗=1 𝛾𝑗,𝑙 = 1 for 𝑙 = 0, 1, . . . 𝑝𝑥, 𝛾𝑗,𝑙 ≥ 0 for
all 𝑗, 𝑙. Note that 𝐵(𝛾, 𝑥) is a vector of mixing probabilities for every 𝑥 and every valid 𝛾 as
𝑏𝑙,𝑝𝑥(𝑥) ≥ 0 for all 𝑥 and

𝑝𝑣∑︁
𝑗=1

(︃
𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)

)︃
=

𝑝𝑥∑︁
𝑙=0

𝑏𝑙,𝑝𝑥(𝑥)

𝑝𝑣∑︁
𝑗=1

𝛾𝑗,𝑙 =

𝑝𝑥∑︁
𝑙=0

𝑏𝑙,𝑝𝑥(𝑥) = 1.

For future reference, define the Bersntein weights 𝛾𝐵 as

𝛾𝐵𝑗,𝑙 = 𝜌0,𝑗

(︂
𝑥𝑙𝑏 +

𝑙(𝑥𝑢𝑏 − 𝑥𝑙𝑏)

𝑝𝑥

)︂
.

where 𝐼 = [𝑥𝑙𝑏, 𝑥𝑢𝑏]. Observe that for any 𝑙 it holds that
∑︀𝑝𝑣

𝑗=1 𝛾
𝐵
𝑗,𝑙 = 1, as those are mixing

probabilities at point 𝑥 = 𝑥𝑙𝑏+𝑙(𝑥𝑢𝑏 − 𝑥𝑙𝑏)/𝑝𝑥. Further, all are non-negative. Correspondingly,
𝛾𝐵 is a feasible choice in the optimization problem (23). Further, 𝛾𝐵 satisfies

sup
𝑥∈𝐼

⃒⃒⃒⃒
⃒𝜌0,𝑗(𝑥)−

𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)

⃒⃒⃒⃒
⃒ = 𝑂(𝑝−1

𝑥 ), 𝑗 = 0, 1, . . . , 𝑝𝑣. (93)

by theorem 4.29 of Bustamante (2017).
We now turn to the estimator 𝐹𝑁(𝑣|𝑥) of (22). The total variation distance between

𝐹𝑁(𝑣|𝑥) and 𝐹0(𝑣|𝑥) can be expressed in terms of 𝐿1 distance between the corresponding
densities (which exist under assumption 5.1). Let 𝑓𝑁(𝑣|𝑥) = 𝜕𝑣𝐹𝑁(𝑣|𝑥) and 𝑓0(𝑣|𝑥) =

𝜕𝑣𝐹0(𝑣|𝑥). These densities may be written as

𝑓𝑁(𝑣|𝑥) =
𝑝𝑣∑︁
𝑗=1

𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)𝜓(𝑣 − 𝑣𝑗,𝑝𝑣), 𝑓0(𝑣|𝑥) =
𝑝𝑣∑︁
𝑗=1

𝜌0,𝑗(𝑥)𝜓(𝑣 − 𝑣𝑗,𝑝𝑣).

where �̂� is defined in eq. (23) and 𝜓 = Ψ′. Then for any 𝑥 ∈ 𝐼

𝑑𝑇𝑉 (𝐹𝑁(·|𝑥), 𝐹0(·|𝑥)) =
1

2

∫︁
|𝑓𝑁(𝑣|𝑥)− 𝑓0(𝑣|𝑥)|𝑑𝑣.

Correspondingly, the distance of interest may be bounded as

2

∫︁
𝑑𝑇𝑉 (𝐹𝑁(·|𝑥), 𝐹0(·|𝑥))𝜋(𝑑𝑥)
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=

∫︁∫︁ ⃒⃒⃒⃒
⃒
𝑝𝑣∑︁
𝑗=1

[︃
𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)− 𝜌0,𝑗(𝑥)

]︃
𝜓(𝑣 − 𝑣𝑗,𝑝𝑣)

⃒⃒⃒⃒
⃒𝑑𝑣𝜋(𝑑𝑥)

≤
∫︁∫︁ 𝑝𝑣∑︁

𝑗=1

⃒⃒⃒⃒
⃒
𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)− 𝜌0,𝑗(𝑥)

⃒⃒⃒⃒
⃒𝜓(𝑣 − 𝑣𝑗,𝑝𝑣)𝑑𝑣𝜋(𝑑𝑥)

=

∫︁ 𝑝𝑣∑︁
𝑗=1

⃒⃒⃒⃒
⃒
𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)− 𝜌0,𝑗(𝑥)

⃒⃒⃒⃒
⃒𝜋(𝑑𝑥)

=

∫︁
‖𝐵(�̂�, 𝑥)− 𝜌0(𝑥)‖1 𝜋(𝑑𝑥). (94)

To bound ‖𝐵(�̂�, 𝑥)− 𝜌0(𝑥)‖1, consider the quadratic form 𝑧′ (︀𝑀 ′
Ψ,𝑝𝑣

Ω𝑀Ψ,𝑝𝑣

)︀
𝑧. Let 𝜆min(𝐴)

be the minimal eigenvalue of a square matrix 𝐴. The following bound obtains:

𝜆min(𝑀
′
Ψ,𝑝𝑣Ω𝑀Ψ,𝑝𝑣)

∫︁
‖𝐵(�̂�, 𝑥)− 𝜌0(𝑥)‖22 𝜋(𝑑𝑥)

≤
∫︁

(𝐵(�̂�, 𝑥)− 𝜌0(𝑥))
′𝑀 ′

Ψ,𝑝𝑣Ω𝑀Ψ,𝑝𝑣 (𝐵(�̂�, 𝑥)− 𝜌0(𝑥))𝜋(𝑑𝑥)

≡ �̄�(𝐵(�̂�, ·)) ≤ �̂�(𝐵(�̂�, ·)) + 𝜂𝑁 ≤ �̂�(𝐵(𝛾𝐵, ·)) + 𝜂𝑁 ≤ �̄�(𝐵(𝛾𝐵, ·)) + 2𝜂𝑁

= 𝑂𝑎.𝑠.

(︂
𝑝−2
𝑥 , max

𝑘=1,...,𝑝𝑣−1
𝛿𝑘,𝑁

)︂
, (95)

where in the first equality we use eq. (90); in the inequalities we use the uniform convergence
of �̂� to �̄� of eq. (91); in the last line we use (92) and

�̄�(𝐵(𝛾𝐵, ·)) =
∫︁ (︀

𝐵(𝛾𝐵, 𝑥)− 𝜌0(𝑥)
)︀′
𝑀 ′

Ψ,𝑝𝑣Ω𝑀Ψ,𝑝𝑣

(︀
𝐵(𝛾𝐵, 𝑥)− 𝜌0(𝑥)

)︀
𝜋(𝑑𝑥)

≤ 𝜆max(𝑀
′
𝜓,𝑝𝑣Ω𝑀Ψ,𝑝𝑣)

∫︁ ⃦⃦
𝐵(𝛾𝐵, 𝑥)− 𝜌0(𝑥)

⃦⃦2
2
𝜋(𝑑𝑥)

≤ 𝑂(𝑝−2
𝑥 ),

where the last line follows from (93).
The result of the theorem follows from observing that (1) 𝜆min(𝑀

′
Ψ,𝑝𝑣

Ω𝑀Ψ,𝑝𝑣) > 0, as
𝑀Ψ,𝑝𝑣 is full-rank by lemma H.1, (2) ‖𝐵(�̂�, 𝑥)− 𝜌0(𝑥)‖1 ≤ 𝑝𝑣 ‖𝐵(�̂�, 𝑥)− 𝜌0(𝑥)‖2 and (3)
combining eqs. (94) and (95).

J Moment Metrics

We first show that 𝑑2𝜇 and 𝑑𝜋2,𝜇 are metrics.

Lemma J.1. Let 𝒬 be the class of cumulative distribution functions with bounded support.
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Define

𝑑2,𝜇(𝐹,𝐺) =

(︃
∞∑︁
𝑘=1

1

𝑘!

[︂∫︁
𝑣𝑘𝐹 (𝑑𝑣)−

∫︁
𝑣𝑘𝐺(𝑑𝑣)

]︂2)︃1/2

.

Then (1) 𝑑2,𝜇(𝐹,𝐺) <∞ for all 𝐹,𝐺 ∈ 𝒬; (2) 𝑑2,𝜇(·, ·) is a metric on 𝒬.

Proof. For (1), let 𝐹,𝐺 ∈ 𝒬. By definition of 𝒬, there exists some 𝑀 > 0 such that
supp(𝐹 ) ⊂ [−𝑀,𝑀 ] and supp(𝐺) ⊂ [−𝑀,𝑀 ]. Then

∫︀
|𝑣|𝑘𝐹 (𝑑𝑣) ≤ 𝑀𝑘 and

∫︀
|𝑣|𝑘𝐺(𝑑𝑣) ≤

𝑀𝑘. Thus,

𝑑2,𝜇(𝐹,𝐺) =
∞∑︁
𝑘=1

1

𝑘!

[︂∫︁
𝑣𝑘𝐹 (𝑑𝑣)−

∫︁
𝑣𝑘𝐺(𝑑𝑡)

]︂2
≤

∞∑︁
𝑘=1

2𝑀2𝑘

𝑘!
<∞.

For (2), we check the defining properties of a metric:

1. 𝑑22,𝜇(𝐹,𝐺) = 0 implies that
∫︀
𝑣𝑘𝐹 (𝑑𝑣) =

∫︀
𝑣𝑘𝐺(𝑑𝑣) for all 𝑘 = 1, 2, . . . . Both 𝐹 and

𝐺 have bounded support, hence the moments uniquely determine the corresponding
distributions. We conclude that 𝐹 = 𝐺.

2. Symmetry is immediate.

3. As 𝑑2,𝜇 has the form of an 𝐿2 metric, the triangle inequality is established by a standard
application of the Cauchy-Schwarz inequality: if 𝐹,𝐺,𝐻 ∈ 𝒬

𝑑22,𝜇(𝐹,𝐺) =
∞∑︁
𝑘=1

1

𝑘!

[︂∫︁
𝑣𝑘𝐹 (𝑑𝑣)−

∫︁
𝑣𝑘𝐺(𝑑𝑣)

]︂2
=

∞∑︁
𝑘=1

1

𝑘!

[︂∫︁
𝑣𝑘𝐹 (𝑑𝑣)−

∫︁
𝑣𝑘𝐻(𝑑𝑣)

]︂2
+

∞∑︁
𝑘=1

1

𝑘!

[︂∫︁
𝑣𝑘𝐻(𝑑𝑣)−

∫︁
𝑣𝑘𝐺(𝑑𝑣)

]︂2
+

∞∑︁
𝑘=1

1

𝑘!

[︂∫︁
𝑣𝑘𝐹 (𝑑𝑣)−

∫︁
𝑣𝑘𝐻(𝑑𝑣)

]︂ [︂∫︁
𝑣𝑘𝐻(𝑑𝑣)−

∫︁
𝑣𝑘𝐺(𝑑𝑣)

]︂
≤ 𝑑22,𝜇(𝐹,𝐻) + 𝑑22,𝜇(𝐻,𝐺) + 2𝑑2,𝜇(𝐹,𝐻)𝑑2,𝜇(𝐻,𝐺)

= [𝑑2,𝜇(𝐹,𝐻) + 𝑑2,𝜇(𝐻,𝐺)]
2 .

Remark 11. 𝑑2,𝜇 is in fact a metric of weak convergence on the class of distributions with
support lying in [−𝑀,𝑀 ], where 𝑀 is a fixed constant. On the larger class 𝒬 the metric 𝑑2,𝜇
metrizes a notion of convergence that it stronger than weak convergence. To see this, let the
distribution 𝐹𝑛 place mass (1/𝑛) on 𝑛! and mass (1− 1/𝑛) on 0. Then 𝐹𝑛 weakly converges
to a point mass at 0, but does not converge in the moment metric.
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We now show that 𝑑𝜋2,𝜇 is a metric.

Lemma J.2. . Let 𝐼 ⊂ R be a closed interval. Let 𝒬𝐼 be the space of bivariate functions
𝐹 (𝑣|𝑥) : R×𝐼 → [0, 1] such that:
(1) for each 𝑡 ∈ R the function 𝐹 (𝑣|𝑥) is continuous in 𝑥;
(2) for each 𝑥 ∈ 𝐼 the function 𝐹 (𝑣|𝑥) is a cdf
(3) the conditional support of 𝐹 (𝑣|𝑥) is bounded uniformly in 𝑥, that is supp(𝐹 (𝑣|𝑥)) ⊂

[−𝑀𝐹 ,𝑀𝐹 ] for some 𝑀𝐹 ≥ 0 that does not depend on 𝑥 (but may depend on 𝐹 ).
Let 𝑑2,𝜇 be defined as in lemma J.1. Let 𝜋 be a finite measure on 𝐼 such that the Lebesgue
measure on 𝐼 is absolutely continuous with respect to 𝜋. Define

𝑑𝜋2,𝜇(𝐹,𝐺) =

∫︁
𝐼

𝑑2,𝜇 (𝐹 (·|𝑥), 𝐺(·|𝑥))𝜋(𝑑𝑥)

Then 𝑑𝜋2,𝜇 is a metric on 𝒬𝐼
𝑀𝑄

.

Proof. Let 𝑑𝜋2,𝜇(𝐹,𝐺) = 0. Then 𝑑2,𝜇 (𝐹 (·|𝑥), 𝐺(·|𝑥)) = 0 for 𝜋-almost all (a.a.) 𝑥. By
assumption, then also 𝑑2,𝜇 (𝐹 (·|𝑥), 𝐺(·|𝑥)) = 0 for Lebesgue-a.a. 𝑥 . Since 𝑑2,𝜇 (𝐹 (·|𝑥), 𝐺(·|𝑥))
is continuous in 𝑥, we conclude that equality holds for all 𝑥 ∈ 𝐼. By lemma J.1 then for each
𝑥 it holds that 𝐹 (𝑣|𝑥) = 𝐺(𝑣|𝑥) for all 𝑣. We conclude that 𝐹 = 𝐺 as functions in 𝒬𝐼 . By
lemma J.1 𝑑𝜋2,𝜇 satisfies all other properties of a metric.

The convergence result of theorem 5.4 is stated of terms the Kolmogorov metric, and not
the moment metric used in estimation. Accordingly, the following lemma establishes an upper
bound on the former metric in terms of the latter one for sequences that are convergent or
divergent in the moment metrics. More generally, the proof provides a generic upper bound
on the Kolmogorov metric in terms of the moment metrics for any pair of distributions (eq.
(99)). A related bound using the Zolotarev 𝜆-metric is obtained by Tardella (2001) for the
case where a given number of moments are matched exactly.

Lemma J.3. Let ℱ ,ℱ 𝐼 be as in lemma 5.3.
(1) Let 𝐹, 𝐹𝑛 ∈ ℱ Then

sup
𝑣∈R

|𝐹𝑛(𝑣)− 𝐹 (𝑣)| =

⎧⎨⎩𝑂 (𝑑2,𝜇(𝐹𝑁 , 𝐹 ) log(𝑑2,𝜇(𝐹𝑁 , 𝐹 ))) , 𝑑2,𝜇(𝐹𝑛, 𝐹 ) → ∞,

𝑂
(︀
[− log(𝑑2,𝜇(𝐹𝑛, 𝐹 ))]

−1/2)
)︀
, 𝑑2,𝜇(𝐹𝑛, 𝐹 ) → 0.

(96)

(2) Let 𝐹𝑛, 𝐹 ∈ ℱ 𝐼 . Then

∫︁
𝐼

sup
𝑣∈R

|𝐹𝑛(𝑣|𝑥)− 𝐹 (𝑣|𝑥)|𝜋(𝑑𝑥) =

⎧⎨⎩𝑂
(︀
𝑑𝜋2,𝜇(𝐹𝑁 , 𝐹 ) log(𝑑

𝜋
2,𝜇(𝐹𝑁 , 𝐹 ))

)︀
, 𝑑𝜋2,𝜇(𝐹𝑛, 𝐹 ) → ∞,

𝑂
(︀
[− log(𝑑Π2,𝜇(𝐹𝑛, 𝐹 ))]

−1/2
)︀
, 𝑑𝜋2,𝜇(𝐹𝑛, 𝐹 ) → 0.

(97)
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Proof. By theorem 1.5.2 in Ibragimov and Linnik (1971), the uniform distance between two
cdfs can be bounded from above as

sup
𝑣∈R

|𝐹 (𝑣|𝑥)−𝐺(𝑣|𝑥)| ≤ 2

𝜋

∫︁ 𝐿

0

⃒⃒⃒⃒
𝜙𝐹 (𝑤|𝑥)− 𝜙𝐺(𝑤|𝑥)

𝑤

⃒⃒⃒⃒
𝑑𝑤 +

24

𝜋

‖𝑔‖∞
𝐿

(98)

where 𝜙𝐹 and 𝜙𝐺 are the characteristic functions of 𝐹 and 𝐺, respectively, and 𝑔 = 𝐺′, and
𝐿 > 0 is a scalar. The difference of characteristic functions can be expressed as

𝜙𝐹 (𝑤|𝑥)− 𝜙𝐺(𝑤|𝑥) =
∞∑︁
𝑘=0

(𝑖𝑤)𝑘

𝑘!

[︂∫︁
𝑧𝑘𝐹 (𝑑𝑧)−

∫︁
𝑧𝑘𝐺(𝑔𝑧)

]︂
.

By Hölder’s inequality for positive 𝑤 it holds that

|𝜙𝐹 (𝑤|𝑥)− 𝜙𝐺(𝑤|𝑥)| ≤
∞∑︁
𝑘=1

𝑤𝑘√
𝑘!

|
∫︀
𝑧𝑘𝐹 (𝑑𝑧)−

∫︀
𝑧𝑘𝐺(𝑑𝑧)|√

𝑘!

≤ 𝑑2,𝜇(𝐹 (·|𝑥), 𝐺(·|𝑥))

⎯⎸⎸⎷ ∞∑︁
𝑘=1

(𝑤2)𝑘

𝑘!

= 𝑑2,𝜇(𝐹 (·|𝑥), 𝐺(·|𝑥))(𝑒𝑤
2 − 1)1/2.

Then

2

𝜋

∫︁ 𝐿

0

⃒⃒⃒⃒
𝜙𝐹 (𝑤|𝑥)− 𝜙𝐺(𝑤|𝑥)

𝑤

⃒⃒⃒⃒
𝑑𝑣 +

24

𝜋

‖𝑔‖∞
𝐿

≤ 2𝑑2,𝜇(𝐹 (·|𝑥), 𝐺(·|𝑥))
𝜋

[︂∫︁ 1

0

√︀
𝑒𝑤2 − 1𝑑𝑣 +

∫︁ 𝐿

1

𝑒𝑤
2/2𝑑𝑣

]︂
+

24

𝜋

‖𝑔‖∞
𝐿

≤ 𝑐1𝑑2,𝜇(𝐹 (·|𝑥), 𝐺(·|𝑥)) + 𝑐2𝐿𝑒
𝐿2/2𝑑2,𝜇(𝐹 (·|𝑥), 𝐺(·|𝑥)) + 𝑐3𝐿

−1, (99)

where 𝑐1, 𝑐2, 𝑐3 are suitable finite constants and we note that∫︁
𝑒𝑤

2

𝑑𝑣 =
∞∑︁
𝑛=0

𝑤2𝑛+1

𝑛!(2𝑛+ 1)
≤ 𝑤

∞∑︁
𝑛=0

𝑤2𝑛

𝑛!
= 𝑤𝑒𝑤

2

.

Taking 𝐿 =
√︀

− log(𝑑2,𝜇(𝐹 (·|𝑥), 𝐺(·|𝑥))) if 𝑑2,𝜇 ≤ 1 and 𝐿 =
√︀

log 𝑑2,𝜇(𝐹 (·|𝑥), 𝐺(·|𝑥)) other-
wise in eqs. (98) and (99) yields eq. (96).

To prove eq. (97), integrate with respect to 𝑥 ∈ 𝐼 in eq. (99) to obtain∫︁
sup
𝑣∈R

|𝐹 (𝑣|𝑥)−𝐺(𝑣|𝑥)|𝜋(𝑑𝑥) ≤ 𝑐1𝑑
𝜋
2,𝜇(𝐹,𝐺) + 𝑐2𝐿𝑒

𝐿2/2𝑑𝜋2,𝜇(𝐹,𝐺) + 𝑐3𝜋(𝐼)𝐿
−1.

Proceeding as above, we obtain eq. (97).
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Proof of lemma 5.3. The results follow immediately from lemmas J.1, J.2, and J.3.

K Sieve Properties

In lemmas K.1 and K.2 we establish the approximation properties of the sieves introduced in
section 3.2 in terms of moment metrics.

Lemma K.1. Let Ψ satisfy assumption 5.3 and 𝐹0(·|𝑥0) satisfy assumption 5.2. Let 𝑝 be a
positive integer and 𝛿 > 0. Let the interval [−𝛿𝑝/2, 𝛿𝑝/2] be partitioned into 𝑝 equal-length
closed intervals of length 𝛿, labeled 𝐵𝑗,𝑝, 𝑗 = 1, . . . , 𝑝 from left to right. Let 𝑣𝑗,𝑝 be the center
of 𝐵𝑗,𝑝. Let 𝜎𝑝 > 0. Define the class ℒ𝑝,𝜎𝑝,𝛿 as

ℒ𝑝,𝜎𝑝,𝛿 =

{︃
Λ

(𝑥0)
𝑝,𝜎𝑝,𝛿

(𝑣|𝛾) =
𝑝∑︁
𝑗=1

𝛾𝑗Ψ

(︂
𝑣 − 𝑣𝑗,𝑝
𝜎𝑝

)︂
,

𝑝∑︁
𝑗=1

𝛾𝑗 = 1, 𝛾𝑗 ≥ 0

}︃
.

Then if 𝛿𝑝→ ∞, there exists a function Π
(𝑥0)
𝑝,𝜎𝑝,𝛿

𝐹0 ∈ ℒ𝑝,𝜎𝑝,𝛿 such that

𝑑2,𝜇

(︁
Π

(𝑥0)
𝑝,𝜎𝑝,𝛿

𝐹0, 𝐹0(·|𝑥0)
)︁
= 𝑂

(︁
max

{︁
𝛿𝑒(𝛿𝑝/2)

2/2, 𝜎𝑝(𝛿𝑝/2 + 𝜎𝑝)𝑒
(𝛿𝑝/2+𝜎𝑝)2/2

}︁)︁
. (100)

In particular, if

𝛿 =

√︀
log(log(𝑝))

𝑝
, 𝜎𝑝 =

1

𝑝
√︀
log(log(𝑝))𝑒

√
log(log(𝑝))

,

then
𝑑2,𝜇

(︁
Π

(𝑥0)
𝑝,𝜎𝑝,𝛿

𝐹0, 𝐹0(·|𝑥0)
)︁
= 𝑂

(︂
log(𝑝)

𝑝

)︂
Proof. Define the function Π

(𝑥0)
𝑝,𝜎𝑝,𝛿

𝐹0 : R → [0, 1] as

(︁
Π

(𝑥0)
𝑝,𝜎𝑝,𝛿

𝐹0

)︁
(𝑣) =

𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)Ψ
(︂
𝑣 − 𝑣𝑗,𝑝
𝜎𝑝

)︂
. (101)

Observe that by definition of the 𝐵𝑗,𝑝, the mixture weights in eq. (101) are non-negative.
Further, observe that 𝐵𝑗,𝑝 may only intersect at their endpoints. As 𝐹0(𝑣|𝑥0) is continuous in 𝑣
under assumption 5.2, the weights sum to 1. Thus, Π(𝑥0)

𝑝,𝜎𝑝,𝛿
𝐹0 ∈ ℒ𝑝,𝜎𝑝,𝛿 for any 𝑝, 𝜎𝑝 > 0, 𝛿 > 0.

We first derive a representation for moments of Π(𝑥0)
𝑝,𝜎𝑝,𝛿

𝐹0 and two useful related inequali-
ties.Let 𝜓 := Ψ′. The 𝑘th moment of Π(𝑥0)

𝑝,𝜎𝑝,𝛿
𝐹0 is given by

𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)
∫︁
𝑣𝑘

1

𝜎𝑝
𝜓

(︂
𝑣 − 𝑣𝑗,𝑝
𝜎𝑝

)︂
𝑑𝑣
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=

𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)
∫︁

((𝑣 − 𝑣𝑗,𝑝) + 𝑣𝑗,𝑝)
𝑘 1

𝜎𝑝
𝜓

(︂
𝑡− 𝑣𝑝𝑗,𝑝
𝜎𝑝

)︂
𝑑𝑣

=

𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)
𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝

∫︁
(𝑣 − 𝑣𝑗,𝑝)

𝑘−𝑖 1

𝜎𝑝
𝜓

(︂
𝑣 − 𝑣𝑗,𝑝
𝜎𝑝

)︂
𝑑𝑣

=

𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)
𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝜎

𝑘−𝑖
𝑝

∫︁
𝑣𝑘−𝑖𝜓(𝑣)𝑑𝑣

=

𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)
𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝜎

𝑘−𝑖
𝑝 𝜇𝑘−𝑖,𝜓, (102)

where 𝜇𝑗,𝜓 =
∫︀
𝑣𝑗𝜓(𝑣)𝑑𝑣 is the 𝑗 moment of Ψ.

Consider the terms with 𝑖 = 𝑘 in eq. (102). By theorem 6 in Dragomir (2000):⃒⃒⃒⃒
⃒
𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)𝑣𝑘𝑗,𝑝 −
∫︁ 𝛿𝑝/2

−𝛿𝑝/2
𝑣𝑘𝐹0(𝑑𝑡|𝑥0)

⃒⃒⃒⃒
⃒ ≤ 𝐶𝑓0𝛿(𝛿𝑝)

𝑘

𝛿𝑝/2⋁︁
−𝛿𝑝/2

𝑣𝑘 = 2𝐶𝑓0𝛿

(︂
𝛿𝑝

2

)︂𝑘
, (103)

where 𝐶𝑓0 = sup𝑥,𝑣|𝐹 ′
0(𝑣|𝑥)| < ∞ by assumption 5.2 and

⋁︀𝑏
𝑎 𝑔 is the total variation of the

function 𝑔 over [𝑎, 𝑏]. Further, observe that eventually
∫︀ 𝛿𝑝/2
−𝛿𝑝/2 𝑣

𝑘𝐹0(𝑑𝑣|𝑥0) = 𝜇𝑘(𝑥0) as 𝛿𝑝→ ∞
by the assumption of the lemma.

Now consider all the terms with 𝑖 ̸= 𝑘 in eq. (102). First we note that⃒⃒⃒⃒
⃒
𝑘−1∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝜎

𝑘−𝑖
𝑝 𝜇𝑘−𝑖,𝜓

⃒⃒⃒⃒
⃒ ≤

𝑘−1∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
|𝑣𝑗,𝑝|𝑖𝜎𝑘−𝑖𝑝 = 𝜎𝑝

𝑘−1∑︁
𝑖=0

𝑘

𝑘 − 𝑖

(︂
𝑘 − 1

𝑖

)︂
|𝑣𝑗,𝑝|𝑖𝜎𝑘−1−𝑖

𝑝

≤ 𝑘𝜎𝑝(|𝑣𝑗,𝑝|+ 𝜎𝑝)
𝑘−1 ≤ 𝑘𝜎𝑝

(︂
𝛿𝑝

2
+ 𝜎𝑝

)︂𝑘−1

(104)

where in the first inequality we use the fact that supp(Ψ) ⊂ [−1, 1] and the last one that
|𝑣𝑗,𝑝| ≤ 𝛿𝑝/2 by definition.

Now we turn to bounding the distance between Π
(𝑥0)
𝑝,𝜎𝑝,𝛿

𝐹0 and 𝐹0(·|𝑥0). By eq. (102):

𝑑22,𝜇

(︁
Π

(𝑥0)
𝑝,𝜎𝑝,𝛿

𝐹0, 𝐹0(·|𝑥0)
)︁

=
∞∑︁
𝑘=1

1

𝑘!

[︃
𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)
∫︁
𝑣𝑘

1

𝜎𝑝
𝜓

(︂
𝑣 − 𝑣𝑗,𝑝
𝜎𝑝

)︂
𝑑𝑣 − 𝜇𝑘(𝑥0)

]︃2

=
∞∑︁
𝑘=1

1

𝑘!

[︃
𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)
𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝜎

𝑘−𝑖
𝑝 𝜇𝑘−𝑖,𝜓 − 𝜇𝑘(𝑥0)

]︃2
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=
∞∑︁
𝑘=1

1

𝑘!

[︃
𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)𝑣𝑘𝑗,𝑝 − 𝜇𝑘(𝑥0) +

𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)
𝑘−1∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝜎

𝑘−𝑖
𝑝 𝜇𝑘−𝑖,𝜓

]︃2

≤
∞∑︁
𝑘=1

2

𝑘!

[︀
𝐹0(𝐵𝑗,𝑝|𝑥0)𝑣𝑘𝑗,𝑝 − 𝜇𝑘(𝑥0)

]︀2
+

∞∑︁
𝑘=1

2

𝑘!

[︃
𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)
𝑘−1∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝜎

𝑘−𝑖
𝑝 𝜇𝑘−𝑖,𝜓

]︃2

By eq. (103) it holds that

∞∑︁
𝑘=1

2

𝑘!

[︀
𝐹0(𝐵𝑗,𝑝|𝑥0)𝑣𝑘𝑗,𝑝 − 𝜇𝑘(𝑥0)

]︀2 ≤ ∞∑︁
𝑘=1

2𝐶2
𝑓0

𝑘!
𝛿2
(︂
𝛿𝑝

2

)︂2𝑘

= 2𝐶2
𝑓0
𝛿2𝑒(𝛿𝑝/2)

2

. (105)

By eq. (104) we obtain

∞∑︁
𝑘=1

1

𝑘!

[︃
𝑝∑︁
𝑗=1

𝐹0(𝐵𝑗,𝑝|𝑥0)
𝑘−1∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝜎

𝑘−𝑖
𝑝 𝜇𝑘−𝑖,𝜓

]︃2
≤

∞∑︁
𝑘=1

1

𝑘!
𝑘2𝜎2

𝑝

(︂
𝛿𝑝

2
+ 𝜎𝑝

)︂2𝑘−2

=
∞∑︁
𝑘=1

𝑘

(𝑘 − 1)!
𝜎2
𝑝

(︂
𝛿𝑝

2
+ 𝜎𝑝

)︂2𝑘−2

=
∞∑︁
𝑘=1

(𝑘 − 1)

(𝑘 − 1)!
𝜎2
𝑝

(︂
𝛿𝑝

2
+ 𝜎𝑝

)︂2𝑘−2

+
∞∑︁
𝑘=1

1

(𝑘 − 1)!
𝜎2
𝑝

(︂
𝛿𝑝

2
+ 𝜎𝑝

)︂2𝑘−2

=
∞∑︁
𝑘=2

1

(𝑘 − 2)!
𝜎2
𝑝

(︂
𝛿𝑝

2
+ 𝜎𝑝

)︂2𝑘−2

+
∞∑︁
𝑘=1

1

(𝑘 − 1)!
𝜎2
𝑝

(︂
𝛿𝑝

2
+ 𝜎𝑝

)︂2𝑘−2

= 𝜎2
𝑝(𝛿𝑝+ 𝜎𝑝)

2

∞∑︁
𝑘=0

(𝛿𝑝/2 + 𝜎𝑝)
2𝑘

𝑘!
+ 𝜎2

𝑝

∞∑︁
𝑘=0

(𝛿𝑝/2 + 𝜎𝑝)
2𝑘

𝑘!

≤ 2𝜎2
𝑝(𝛿𝑝/2 + 𝜎𝑝)

2𝑒(𝛿𝑝/2+𝜎𝑝)
2

. (106)

Eq. (100) follows from eqs. (105) and (106).

Lemma K.2. Let Ψ satisfy assumption 5.3 and let 𝐹0 satisfy assumption 5.2. Let 𝑝𝑣, 𝑝𝑥
be positive integers; let 𝛿 and 𝜎𝑝 be positive numbers. Let the interval [−𝛿𝑝𝑣/2, 𝛿𝑝𝑣/2] be
partitioned into 𝑝𝑣 equal-length closed intervals of length 𝛿, labeled 𝐵𝑗,𝑝𝑣 , 𝑗 = 1, . . . , 𝑝𝑣 from
left to right. Let 𝑣𝑗,𝑝𝑣 be the center of 𝐵𝑗,𝑝𝑣 . Define the class ℒ𝐼(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥 as

ℒ𝐼(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥=

{︃
Λ(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥(𝑣|𝑥,𝛾)=

𝑝𝑣∑︁
𝑗=1

𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)Ψ

(︂
𝑣 − 𝑣𝑗,𝑝𝑣
𝜎𝑝

)︂
, 𝛾𝑗𝑙 ≥ 0,

𝑝𝑣∑︁
𝑗=1

𝛾𝑗,𝑙 = 1 ∀𝑙

}︃
,

𝑏𝑙,𝑝𝑥(𝑥) =

(︂
𝑝𝑥
𝑙

)︂(︂
𝑥− 𝑥𝑙𝑏
𝑥𝑢𝑏 − 𝑥𝑙𝑏

)︂𝑙(︂
𝑥𝑢𝑏 − 𝑥

𝑥𝑢𝑏 − 𝑥𝑙𝑏

)︂𝑝𝑥−𝑙
.

Then:
(1) For each valid vector 𝛾 and each 𝑥 ∈ 𝐼 the function Λ(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥(𝑣|𝑥,𝛾) is a cdf. Support
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of Λ(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥(𝑣|𝑥,𝛾) is bounded uniformly in 𝑥

(2) Let 𝜋 be a finite measure on 𝐼. If 𝛿𝑝𝑣 → ∞, there exists Π(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥𝐹0(𝑣|𝑥) ∈ ℒ𝐼(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥
such that

𝑑𝜋2,𝜇
(︀
Π(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥𝐹0(𝑣|𝑥), 𝐹0(𝑣|𝑥)

)︀
≤ 1

𝜋(𝐼)

∫︁
𝑑22,𝜇

(︀
Π(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥𝐹0(𝑣|𝑥), 𝐹0(𝑣|𝑥)

)︀
𝜋(𝑑𝑥)

= 𝑂
(︁
max

{︁
𝛿𝑒(𝛿𝑝/2)

2/2, 𝑝−1
𝑥 𝑒(𝛿𝑝/2+2)2/2, 𝜎𝑝(𝛿𝑝/2 + 𝜎𝑝)𝑒

(𝛿𝑝/2+𝜎𝑝)2/2
}︁)︁

(3) In particular, if

𝑝𝑣 = 𝑝𝑥, 𝛿 =

√︀
log(log(𝑝𝑣))

𝑝𝑣
, 𝜎𝑝 =

1

𝑝
√︀

log(log(𝑝𝑣))𝑒
√

log(log(𝑝𝑣))
,

then ∫︁
𝑑22,𝜇

(︀
Π(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥𝐹0(𝑣|𝑥), 𝐹0(𝑣|𝑥)

)︀
𝜋(𝑑𝑥) = 𝑂

(︂
log(𝑝𝑣)

𝑝𝑣

)︂
.

Proof. We begin with the first assertion. First,
∑︀𝑝𝑥

𝑙=0 𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥) ≥ 0 for all 𝑗 = 1, . . . , 𝑝𝑣 as
𝛾𝑗,𝑙 ≥ 0 and for any 𝑥 ∈ 𝐼, 𝑏𝑙,𝑝𝑥(𝑥) ≥ 0. Second, the mixture weights sum to unity: since∑︀𝑝𝑥

𝑙=0 𝑏𝑙,𝑝𝑥(𝑥) = 1 for each 𝑥 ∈ 𝐼, it holds that

𝑝𝑣∑︁
𝑗=1

(︃
𝑝𝑥∑︁
𝑙=0

𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)

)︃
=

𝑝𝑥∑︁
𝑙=0

𝑏𝑙,𝑝𝑥(𝑥)

𝑝𝑣∑︁
𝑗=1

𝛾𝑗,𝑙 =

𝑝𝑥∑︁
𝑙=0

𝑏𝑙,𝑝𝑥(𝑥) = 1.

Define

Π(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥𝐹0(𝑣|𝑥) =
𝑝𝑣∑︁
𝑗=1

𝑝𝑥∑︁
𝑙=0

𝐹0

(︂
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥𝑙𝑏 +

𝑙(𝑥𝑢𝑏 − 𝑥𝑙𝑏)

𝑝𝑥

)︂
𝑏𝑙,𝑝𝑥(𝑥)Ψ

(︂
𝑡− 𝑣𝑗,𝑝𝑣
𝜎𝑝

)︂
,

where 𝑥𝑙𝑏 and 𝑥𝑢𝑏 are the endpoints of 𝐼. Observe that by construction Π(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥𝐹0(𝑣|𝑥) ∈
ℒ𝐼(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥 , as the intervals 𝐵𝑗,𝑝𝑣 may only interest at their endpoints and 𝐹0(𝑣|𝑥) is continuous
in 𝑡 for each 𝑥.

To prove approximation properties, we proceed similarly to lemma K.1. The 𝑘th moment
of the approximation at 𝑥 is given by

𝑝𝑣∑︁
𝑗=1

𝑝𝑥∑︁
𝑙=0

𝐹0

(︂
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥𝑙𝑏 +

𝑙(𝑥𝑢𝑏 − 𝑥𝑙𝑏)

𝑝𝑥

)︂
𝑏𝑙,𝑝𝑥(𝑥)

∫︁
𝑣𝑘

1

𝜎𝑝
𝜓

(︂
𝑣 − 𝑣𝑗,𝑝𝑣
𝜎𝑝

)︂
𝑑𝑣

=

𝑝𝑣∑︁
𝑗=1

𝑝𝑥∑︁
𝑙=0

𝐹0

(︂
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥𝑙𝑏 +

𝑙(𝑥𝑢𝑏 − 𝑥𝑙𝑏)

𝑝𝑥

)︂
𝑏𝑙,𝑝𝑥(𝑥)

𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝑣𝜎

𝑘−𝑖
𝑝 𝜇𝑘−𝑖,𝜓, (107)

We being by considering the term corresponding to 𝑖 = 𝑘 in the third sum. This term targets
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𝜇𝑘(𝑥). Further, the difference may be decomposed as

𝑝𝑣∑︁
𝑗=1

𝑣𝑘𝑗,𝑝𝑣

[︃
𝑝𝑥∑︁
𝑙=0

𝐹0

(︂
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥𝑙𝑏 +

𝑙(𝑥𝑢𝑏 − 𝑥𝑙𝑏)

𝑝𝑥

)︂
𝑏𝑙,𝑝𝑥(𝑥)− 𝐹0

(︁
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥
)︁]︃

+

𝑝𝑣∑︁
𝑗=1

𝐹0

(︁
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥
)︁
𝑣𝑘𝑗,𝑝𝑣 − 𝜇𝑘(𝑥). (108)

First, as in lemma K.1, by theorem 6 of Dragomir (2000) we obtain that

sup
𝑥∈𝐼

⃒⃒⃒⃒
⃒
𝑝𝑣∑︁
𝑗=1

𝐹0

(︁
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥
)︁
𝑣𝑘𝑗,𝑝𝑣 − 𝜇𝑘(𝑥)

⃒⃒⃒⃒
⃒ ≤ 𝐶𝑓0𝛿

(︂
𝛿𝑝

2

)︂𝑘
,

for 𝐶𝑓0 = sup𝑣∈R,𝑥∈𝐼 𝐹0(𝑣|𝑥).
Second, we consider the leading sum in eq. (108). By assumption 5.2, the function (of

𝑥) 𝐹0(𝐵𝑗,𝑝𝑣 |𝑥) =
∫︀
𝐵𝑗,𝑝𝑣

𝐹0(𝑣|𝑥)𝑑𝑣 is twice-differentiable with a bounded continuous second
derivative on 𝐼. Label the endpoints of 𝐵𝑗,𝑝𝑣 as 𝐵𝑗,𝑝𝑣 = [𝑤𝑗−1,𝑝𝑣 , 𝑤𝑗,𝑝𝑣 ] and recall that
𝑤𝑗,𝑝𝑣 − 𝑤𝑗−1,𝑝𝑣 = 𝛿. We can estimate the second derivative of 𝐹0(𝐵𝑗,𝑝𝑣 |𝑥) as

⃒⃒
𝜕2𝑥𝐹0(𝐵𝑗,𝑝𝑣 |𝑥)

⃒⃒
=

⃒⃒⃒⃒
⃒𝛿 1

𝑤𝑗,𝑝𝑣 − 𝑤𝑗−1,𝑝𝑣

∫︁ 𝑤𝑗,𝑝𝑣

𝑤𝑗−1,𝑝𝑣

𝜕𝑥𝐹0(𝑣|𝑥)𝑑𝑣

⃒⃒⃒⃒
⃒ ≤ 𝐶𝜕𝑥𝑓0𝛿.

where 𝐶𝜕𝑥𝐹0 = sup𝑣,𝑥|𝜕𝑥𝐹0(𝑣|𝑥)|. Then from theorem 4.29 of Bustamante (2017) it follows
that for some 𝐶Π <∞

max
𝑥∈𝐼

⃒⃒⃒⃒
⃒
𝑝𝑥∑︁
𝑙=0

𝐹0

(︂
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥𝑙𝑏 +

𝑙(𝑥𝑢𝑏 − 𝑥𝑙𝑏)

𝑝𝑥

)︂
𝑏𝑙,𝑝𝑥(𝑥)− 𝐹0(𝐵𝑗,𝑝𝑣 |𝑥)

⃒⃒⃒⃒
⃒ ≤ 𝐶Π𝛿

𝑝𝑥
.

It follows that ⃒⃒⃒⃒
⃒
𝑝𝑣∑︁
𝑗=1

𝑣𝑘𝑗,𝑝𝑣

𝑝𝑥∑︁
𝑙=0

[︂
𝐹0

(︂
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥𝑙𝑏 +

𝑙(𝑥𝑢𝑏 − 𝑥𝑙𝑏)

𝑝𝑥

)︂
𝑏𝑙,𝑝𝑥(𝑥)− 𝐹0(𝑥)

]︂⃒⃒⃒⃒
⃒

≤ 𝐶Π𝛿

𝑝𝑥

𝑝𝑣∑︁
𝑗=1

|𝑣𝑗,𝑝𝑣 |𝑘 ≤
𝐶𝜋𝛿

𝑘+1

𝑝𝑥

(⌈𝑝𝑣
2
⌉+ 1)𝑘+1

𝑘 + 1
,

where we observe that

𝑝𝑣∑︁
𝑗=1

|𝑣𝑗,𝑝𝑣 |𝑘 ≤ 2

⌈𝑝𝑣/2⌉∑︁
𝑗=1

((𝑗 + 1)𝛿)𝑘 = 2𝛿𝑘
⌈𝑝𝑣/2⌉∑︁
𝑗=1

(𝑗 + 1)𝑘

≤ 2𝛿𝑘
∫︁ ⌈𝑝𝑣/2⌉+1

1

(𝑥+ 1)𝑘 ≤ 2𝛿𝑘
(⌈𝑝𝑣

2
⌉+ 1)𝑘+1

𝑘 + 1
.
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Now consider the sum over 𝑖 from 0 to 𝑘 − 1 in eq. (107). By eq. (104)⃒⃒⃒⃒
⃒
𝑘−1∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝜎

𝑘−𝑖
𝑝 𝜇𝑘−𝑖,𝜓

⃒⃒⃒⃒
⃒ ≤ 𝑘𝜎𝑝

(︂
𝛿𝑝𝑣
2

+ 𝜎𝑝

)︂𝑘−1

.

Correspondingly,⃒⃒⃒⃒
⃒
𝑝𝑣∑︁
𝑗=1

𝑝𝑥∑︁
𝑙=0

𝐹0

(︂
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥𝑙𝑏 +

𝑙(𝑥𝑢𝑏 − 𝑥𝑙𝑏)

𝑝𝑥

)︂
𝑏𝑙,𝑝𝑥(𝑥)

𝑘−1∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑣𝑖𝑗,𝑝𝑣𝜎

𝑘−𝑖
𝑝 𝜇𝑘−𝑖,𝜓

⃒⃒⃒⃒
⃒

≤ 𝑘𝜎𝑝

(︂
𝛿𝑝𝑣
2

+ 𝜎𝑝

)︂𝑘−1 𝑝𝑣∑︁
𝑗=1

𝑝𝑥∑︁
𝑙=0

𝐹0

(︂
𝐵𝑗,𝑝𝑣

⃒⃒⃒
𝑥𝑙𝑏 +

𝑙(𝑥𝑢𝑏 − 𝑥𝑙𝑏)

𝑝𝑥

)︂
𝑏𝑙,𝑝𝑥(𝑥)

= 𝑘𝜎𝑝

(︂
𝛿𝑝𝑣
2

+ 𝜎𝑝

)︂𝑘−1

.

Then it holds that∫︁
𝑑22,𝜇

(︀
Π(𝑝𝑣 ,𝛿,𝜎𝑝),𝑝𝑥𝐹0(𝑣|𝑥), 𝐹0(𝑣|𝑥)

)︀
𝜋(𝑑𝑥)

≤ 8

∫︁
𝐼

∞∑︁
𝑘=0

1

𝑘!

⎡⎣[︃𝐶𝑓0𝛿(︂𝛿𝑝𝑣2
)︂𝑘]︃2

+

[︂
𝐶𝜋𝛿

𝑘+1

𝑝𝑥

(⌈𝑝𝑣
2
⌉+ 1)𝑘+1

𝑘 + 1

]︂2
+

[︃
𝑘𝜎𝑝

(︂
𝛿𝑝𝑣
2

+ 𝜎𝑝

)︂𝑘−1
]︃2⎤⎦ 𝜋(𝑑𝑥)

≤ 8𝜋(𝐼)

[︂
2𝐶2

𝑓0
𝛿2𝑒(𝛿𝑝𝑣/2)

2

+ 𝑒(𝛿𝑝𝑣/2+2)2𝐶
2
𝜋

𝑝2𝑥
+ 2𝜎2

𝑝(𝛿𝑝𝑣/2 + 𝜎𝑝)
2𝑒(𝛿𝑝𝑣/2+𝜎𝑝)

2

]︂
.

The equality in (2) follows by the assumption that 𝜋(𝐼) <∞. To see the inequality in (2),
observe that by Jensen’s inequality for any 𝐹,𝐺 ∈ ℱ 𝐼 it holds that

[︀
𝑑𝜋2,𝜇(𝐹,𝐺)

]︀2
=

[︂∫︁
𝑑2,𝜇(𝐹 (·|𝑥), 𝐺(·|𝑥))𝜋(𝑑𝑥)

]︂2
≤ 1

𝜋(𝐼)

∫︁
𝐼

𝑑22,𝜇(𝐺(·|𝑥), 𝐺(·|𝑥))𝜋(𝑑𝑥). (109)

(3) can be obtained by substituting the proposed values for 𝑝𝑣, 𝑝𝑥, 𝛿, 𝜎𝑝.

L Proof of Theorem 5.4

We will use the following high-level lemma to establish the consistency (theorem 5.4) of the
distribution estimators. The lemma be viewed as a modification and amalgamation of lemmas
A.2 and B.1 of Chen and Pouzo (2012).

Lemma L.1. Let �̃�𝑁 (·|𝑥0) and 𝑄(·|𝑥0) be defined as in eqs. (28) and (29), respectively. Let
ℒ𝑝 be the 𝑝th sieve space defined in eq. (25) and ℱ be as in assumption 5.2, both equipped
with the metric topology induced by 𝑑2,𝜇 and the corresponding Borel 𝜎-algebra. Let
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(1) 𝑝 = 𝑝(𝑁) be a non-decreasing sequence such that 𝑝→ ∞ as 𝑁 → ∞.
(2) sup𝐹∈ℒ𝑝

⃒⃒⃒
�̃�𝑁(𝐹 |𝑥0)−𝑄(𝐹 |𝑥0)

⃒⃒⃒
≤ 𝜂𝑄,𝑁 where 𝜂𝑄,𝑁 = 𝑂𝑎.𝑠.(𝛿𝑄,𝑁) for a deterministic

sequence 𝛿𝑄,𝑁 = 𝑜(1).
(3) 𝐹𝑁(𝑣|𝑥0) = argmin𝐹∈ℒ𝑝

[︁
�̃�𝑁(𝐹 |𝑥0) + 𝜆𝑁𝑃𝑝(𝐹 )

]︁
for some non-negative 𝜆𝑁 and a non-

negative penalty function 𝑃𝑝 : ℒ𝑝 → R+.
(4) There exists an approximating function Π

(𝑥0)
𝑝 𝐹0 ∈ ℒ𝑝 such that 𝑑2,𝜇(Π

(𝑥0)
𝑝 𝐹0, 𝐹0) → 0.

(5) 𝜆𝑁𝑃𝑝

(︁
Π

(𝑥0)
𝑝 𝐹0

)︁
→ 0.

(6) 𝐹𝑁(𝑣|𝑥0) is a measurable function of the data.
Then

𝑑2,𝜇(𝐹𝑁(·|𝑥0), 𝐹0(·|𝑥0))

= 𝑂𝑎.𝑠.

(︃
max

{︃
𝑑2,𝜇

(︀
Π(𝑥0)
𝑝 𝐹0, 𝐹0

)︀
,
√︀
𝛿𝑄,𝑁 ,

√︂
𝜆𝑁𝑃𝑝

(︁
Π

(𝑥0)
𝑝 𝐹0

)︁}︃)︃
= 𝑜𝑎.𝑠.(1).

Proof. Note that by definition ℒ𝑝 ⊂ ℱ for any 𝑝, and so both 𝑄(𝐹
(𝑥0)
𝑁 |𝑥0) and 𝑄(Π

(𝑥0)
𝑝 𝐹0|𝑥0)

are defined.
Consider the following chain of inequalities:

𝑄(𝐹
(𝑥0)
𝑁 |𝑥0) ≤ �̃�𝑁(𝐹𝑁(·|𝑥0)|𝑥0) + 𝜂𝑄,𝑁 + 𝜆𝑁𝑃𝑝(𝐹𝑁(·|𝑥0))

≤ �̃�𝑁(Π
(𝑥0)
𝑝 𝐹0) + 𝜂𝑄,𝑁 + 𝜆𝑁𝑃𝑝(Π

(𝑥0)
𝑝 𝐹0|𝑥0)

≤ 𝑄(Π(𝑥0)
𝑝 𝐹0|𝑥0) + 2𝜂𝑄,𝑁 + 𝜆𝑁𝑃𝑝(Π

(𝑥0)
𝑝 𝐹0).

where the first inequality holds by assumption of uniform convergence of �̃�𝑁 (·|𝑥0) to 𝑄(·|𝑥0)
over ℒ𝑝 and non-negativity of the penalty term; second inequality by definition of 𝐹𝑁(𝑣|𝑥0)
and the fact that Π(𝑥0)

𝑝 𝐹0 ∈ ℒ𝑝; and the last inequality by applying uniform convergence again.
Finally, recall that 𝑄(𝐹 |𝑥0) = 𝑑22,𝜇(𝐹, 𝐹0(·|𝑥0)) by eq. (29). Further, 𝑄(·|𝑥0) is continuous
on ℱ (as the square of the metric generating the topology of ℱ), and thus measurable. The
result follows.

An analogous result holds in the interval case.

Lemma L.2. Let �̂�𝑁 and 𝑄 be defined as in eqs. (30) and (31), respectively. Let ℒ𝐼𝑝𝑣 ,𝑝𝑥 be
the (𝑝𝑣, 𝑝𝑥)th sieve space defined in eq. (27) and ℱ 𝐼 be as in assumption 5.2, both equipped
with the metric topology induced by 𝑑𝜋2,𝜇 and the corresponding Borel 𝜎-algebra for 𝑑𝜋2,𝜇. Let
(1) 𝑝𝑣 = 𝑝𝑣(𝑁), 𝑝𝑥 = 𝑝𝑥(𝑁) be non-decreasing sequences such that 𝑝𝑣, 𝑝𝑥 → ∞ as 𝑁 → ∞.
(2) sup𝐹∈ℒ𝐼

𝑝𝑣,𝑝𝑥

⃒⃒⃒
�̂�𝑁(𝐹 )−𝑄(𝐹 )

⃒⃒⃒
≤ 𝜂𝐼𝑄,𝑁 where 𝜂𝐼𝑄,𝑁 = 𝑂𝑎.𝑠.(𝛿

𝐼
𝑄,𝑁 ) for a deterministic sequence

that satisfies 𝛿𝑄,𝑁 = 𝑜(1).

91



(3) 𝐹𝑁 = argmin𝐹∈ℒ𝐼
𝑝𝑣,𝑝𝑥

[︁
�̂�𝑁(𝐹 ) + 𝜆𝐼𝑁𝑃

𝐼
𝑝 (𝐹 )

]︁
for some non-negative 𝜆𝐼𝑁 and a non-negative

penalty function 𝑃 𝐼
𝑝𝑣 ,𝑝𝑥 : ℒ𝐼𝑝𝑣 ,𝑝𝑥 → R+.

(4) There exists some Π𝑝𝑣 ,𝑝𝑥𝐹0 ∈ ℒ𝑝𝑣 ,𝑝𝑥 such that
∫︀
𝑑22,𝜇(Π𝑝𝑣 ,𝑝𝑥𝐹0(·|𝑥), 𝐹0(·|𝑥)) × 𝜋(𝑑𝑥) =

𝑂(𝛿Π,𝑁) for 𝛿Π,𝑁 = 𝑜(1).
(5) 𝜆𝐼𝑁𝑃

𝐼
𝑝𝑣 ,𝑝𝑥 (Π𝑝𝑣 ,𝑝𝑥𝐹0) → 0.

(6) 𝐹𝑁 is a measurable function of the data.
Then

𝑑𝜋2,𝜇(𝐹𝑁 , 𝐹0) = 𝑂𝑎.𝑠.

(︁
max

{︁√︀
𝛿Π,𝑁 ,

√︁
𝛿𝐼𝑄,𝑁 ,

√︁
𝜆𝐼𝑁𝑃

𝐼
𝑝𝑣 ,𝑝𝑥 (Π𝑝𝑣 ,𝑝𝑥𝐹0)

}︁)︁
= 𝑜𝑎.𝑠.(1).

Proof. Proceeding as in lemma L.1, we obtain that

𝑄(𝐹𝑁) ≤ 𝑄(Π𝑝𝑣 ,𝑝𝑥𝐹0) + 2𝜂𝐼𝑄,𝑁 + 𝜆𝐼𝑁𝑃
𝐼
𝑝𝑣 ,𝑝𝑥(Π𝑝𝑣 ,𝑝𝑥𝐹0).

Observe that 𝑄(𝐹 ) =
∫︀
𝐼
𝑑22,𝜇(𝐹 (·|𝑥), 𝐺(·, 𝑥))𝜋(𝑑𝑥) for any 𝐹 ∈ ℱ 𝐼 . It then holds that

𝑑𝜋2,𝜇(𝐹 ) ≤
√︀
𝑄(𝐹 ) by eq. (109). The conclusion follows.

The following lemma shows that the sample objective functions converge to the population
objective functions, verifying conditions (2) of lemmas L.1 and L.2.

Lemma L.3. Let assumptions of theorem 5.4 hold. Let �̃�𝑁(·|·), �̂�𝑁(·), 𝑄(·|·), ad 𝑄(·) be
defined as in eqs. (28)-(31). Let the sieve spaces ℒ𝑝,ℒ𝐼𝑝𝑣 ,𝑝𝑥 be as in the eqs. (25) and (27),
respectively. Then

sup
𝐹∈ℒ𝑝

⃒⃒⃒
�̃�𝑁(𝐹 |𝑥)−𝑄(𝐹 |𝑥)

⃒⃒⃒
𝑎.𝑠.−−→ 0, for any 𝑥 ∈ 𝐼 (110)

sup
𝐹∈ℒ𝐼

𝑝𝑣,𝑝𝑥

⃒⃒⃒
�̂�𝑁(𝐹 )−𝑄(𝐹 )

⃒⃒⃒
𝑎.𝑠.−−→ 0. (111)

Proof. We establish eq. (111). The proof of eq. (110) is analogous, but easier. Define the
functions �̂�𝑁(𝐹, 𝑥), 𝐻(𝐹, 𝑥) : ℱ 𝐼 × 𝐼 → R as

�̂�𝑁(𝐹, 𝑥) =
𝐾−1∑︁
𝑘=1

1

𝑘!

[︂
�̃�𝑘(𝑥)−

∫︁
𝑣𝑘𝐹 (𝑑𝑣|𝑥)

]︂2
,

𝐻(𝐹, 𝑥) =
∞∑︁
𝑘=1

1

𝑘!

[︂
𝜇𝑘(𝑥)−

∫︁
𝑣𝑘𝐹 (𝑑𝑣|𝑥)

]︂2
.

As in the proof of lemma J.1, observe that 𝐻(𝐹, 𝑥) < ∞ for any 𝑥 ∈ 𝐼 and 𝐹 ∈ ℱ 𝐼 .
As ℒ𝐼𝑝𝑣 ,𝑝𝑥 ⊂ ℱ 𝐼 for all (𝑝𝑣, 𝑝𝑥), 𝐻 and �̂� are automatically defined on ℒ𝐼𝑝𝑣 ,𝑝𝑥 . It holds
�̂�𝑁(𝐹 ) =

∫︀
𝐼
�̂�𝑁(𝐹, 𝑥)𝜋(𝑑𝑥) and 𝑄(𝐹 ) =

∫︀
𝐻(𝐹, 𝑥)𝜋(𝑑𝑥).
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Bound the difference of �̂�𝑁(𝐹, 𝑥) and 𝐻(𝐹, 𝑥) for given 𝐹 ∈ ℒ𝐼𝑝𝑣 ,𝑝𝑥 , 𝑥 ∈ 𝐼 as⃒⃒⃒
�̂�𝑁(𝐹, 𝑥)−𝐻(𝐹, 𝑥)

⃒⃒⃒
≤

⃒⃒⃒⃒
⃒
𝐾−1∑︁
𝑘=1

1

𝑘!

(︀
�̃�2
𝑘(𝑥)− 𝜇2

𝑘(𝑥)
)︀⃒⃒⃒⃒⃒+ 2

⃒⃒⃒⃒
⃒
𝐾−1∑︁
𝑘=1

1

𝑘!

[︂
(�̃�𝑘(𝑥)− 𝜇𝑘(𝑥))

∫︁
𝑣𝑘𝐹 (𝑑𝑣|𝑥)

]︂⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝐾+

1

𝑘!
𝜇2
𝑘(𝑥)

⃒⃒⃒⃒
⃒+ 2

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝐾

1

𝑘!
𝜇𝑘(𝑥)

∫︁
𝑣𝑘𝐹 (𝑑𝑣|𝑥)

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝐾

1

𝑘!

[︂∫︁
𝑣𝑘𝐹 (𝑑𝑣|𝑥)

]︂2 ⃒⃒⃒⃒⃒.
We will now show each sum tends to 0 a.s. uniformly over 𝐹 ∈ ℒ𝐼𝑝𝑣 ,𝑝𝑥 and 𝑥 ∈ 𝐼 as
𝑁 → ∞, 𝑝𝑣 = 𝑝𝑣(𝑁) → ∞, 𝑝𝑥 = 𝑝𝑥(𝑁) → ∞, 𝐾 = 𝐾(𝑁) → ∞.

Consider the first sum and observe that it does not depend on 𝐹 . Consider the function
𝑔𝑁(𝑘) defined as 𝑔𝑁(𝑘) = (𝑘!)−1 sup𝑥∈𝐼 |�̃�2

𝑘(𝑥)− 𝜇2
𝑘(𝑥)| for 𝑘 ≤ 𝐾 and 𝑔𝑁(𝑘) = 0 for 𝑘 > 𝐾.

Define the event 𝐵𝑘 = {𝑔𝑁 (𝑘)
𝑎.𝑠.−−→ 0}. By the assumption of the theorem, 𝑃 (𝐵𝑘) = 1 for all 𝑘.

On the event 𝐵 =
⋂︀∞
𝑘=1𝐵𝑘, the function 𝑔𝑁 converges to the zero function pointwise. Observe

that |𝑔𝑁(𝑘)| ≤ 2𝐶𝑘
𝜇(𝑘!)

−1/2 for all 𝑁 by assumption 5.2 and definition of �̃�𝑘(𝑥) (above eq.
(32)). As

∑︀∞
𝑘=0𝐶

𝑘
𝜇(𝑘!)

−1/2 <∞, by the dominated convergence theorem on 𝐵 it holds that

sup
𝐹∈ℒ𝐼

𝑝𝑣,𝑝𝑥

max
𝑥∈𝐼

⃒⃒⃒⃒
⃒
𝐾−1∑︁
𝑘=1

1

𝑘!

(︀
�̃�2
𝑘(𝑥)− 𝜇2

𝑘(𝑥)
)︀⃒⃒⃒⃒⃒ ≤

∞∑︁
𝑘=1

𝑔𝑁(𝑘) → 0.

Since 𝑃 (𝐵) = 1, convergence is a.s.
Now consider the last term. Observe the support of any 𝐹 ∈ ℒ𝐼𝑝𝑣 ,𝑝𝑥 satisfies supp(𝐹 ) ⊂

[−𝐶ℱ log(𝑝𝑣), 𝐶ℱ log(𝑝𝑣)]), where 𝐶ℱ is a constant that does not depend on 𝐹 or (𝑝𝑣, 𝑝𝑥).
Thus, for any 𝐹 ∈ ℒ𝐼𝑝𝑣 ,𝑝𝑥 its 𝑘th conditional moment

∫︀
𝑣𝑘𝐹 (𝑑𝑣|𝑥) lies in the interval

[−(𝐶ℱ log(𝑝𝑣))
𝑘, (𝐶ℱ log(𝑝𝑣))

𝑘] for all 𝑥 ∈ 𝐼. It follows that

sup
𝐹∈ℒ𝐼

𝑝𝑣,𝑝𝑥

∞∑︁
𝑘=𝐾

1

𝑘!

[︂∫︁
𝑣𝑘𝐹 (𝑑𝑣|𝑥)

]︂2
≤

∞∑︁
𝑘=𝐾

(𝐶ℱ log(𝑝𝑣))
2𝑘

𝑘!

= 2

[︃
𝑒(𝐶ℱ log(𝑝𝑣))2 −

𝐾−1∑︁
𝑘=0

(𝐶ℱ log(𝑝𝑣))
2𝑘

𝑘!

]︃

.
(𝐶ℱ log(𝑝𝑣))

2𝐾

𝐾!
𝑒(𝐶ℱ log(𝑝𝑣))2

∼ 𝑒𝐾(𝐶ℱ log(𝑝𝑣))
2𝐾𝑒(𝐶ℱ log(𝑝𝑣))2

√
𝐾𝐾𝐾

,

where the second line follows from (1.1) in Pritsker and Varga (1997) and where we apply
Stirling’s approximation in the last line. As 𝑝𝑣 = 𝑜(exp(𝐾1/2)) by the assumption of the
theorem, the above expression tends to zero.
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The remaining terms can be handled by applying logic similar to that of the above
arguments. Again using the fact that sup𝐹∈ℱ𝐼

𝑝𝑣,𝑝𝑥

∫︀
𝑣𝑘𝐹 (𝑑𝑣|𝑥) ≤ 2(𝐶ℱ log(𝑝𝑣))

𝑘, we obtain
the following bound for the second term:

sup
𝑓∈ℒ𝐼

𝑝𝑣,𝑝𝑥

max
𝑥∈𝐼

⃒⃒⃒⃒
⃒
𝐾−1∑︁
𝑘=1

1

𝑘!

[︂
(�̃�𝑘(𝑥)− 𝜇𝑘(𝑥))

∫︁
𝑣𝑘𝐹 (𝑣|𝑥)𝑑𝑡

]︂⃒⃒⃒⃒
⃒ ≤

𝐾−1∑︁
𝑘=1

|𝐶ℱ log(𝑝𝑣)|𝑘

𝑘!
sup
𝑥∈𝐼

|�̃�𝑘(𝑥)− 𝜇𝑘(𝑥)|

Let the event 𝐵 be as above. Each term on the right hand side converges to zero on 𝐵 by
the assumption that (log(𝑝𝑣))

𝑘 = 𝑜(𝛿𝑘,𝑁) for each 𝑘. By proceeding as with the first term,
we now obtain that the this term converges to zero on 𝐵. For the third term, note that by
assumption 5.2 the true distribution 𝐹0 has bounded support, bounded uniformly in 𝑥 ∈ 𝐼.
Correspondingly, there exists some constant 𝑀 such that supp(𝐹0(𝑣|𝑥)) ⊂ [−𝑀,𝑀 ] for all
𝑥 ∈ 𝐼. Then

sup
𝐹∈ℒ𝐼

𝑝𝑣,𝑝𝑥

sup
𝑥∈𝐼

∞∑︁
𝑘=𝐾

𝜇2
𝑘(𝑥) ≤

∞∑︁
𝑘=𝐾

𝑀2𝑘

𝑘!
.
𝑀2𝐾

𝐾!
𝑒𝑀

2

,

which tends to zero as 𝐾 → ∞.
Finally, for the fourth term use both the support bound on members of ℒ𝐼𝑝𝑣 ,𝑝𝑥 and the

bounded support assumption on 𝐹0 to obtain

sup
𝐹∈ℒ𝐼

𝑝𝑣,𝑝𝑥

sup
𝑥∈𝐼

⃒⃒⃒⃒
⃒

∞∑︁
𝑘=𝐾

1

𝑘!
𝜇𝑘(𝑥)

∫︁
𝑣𝑘𝐹 (𝑑𝑣|𝑥)

⃒⃒⃒⃒
⃒ ≤

∞∑︁
𝑘=𝐾

(𝑀𝐶ℱ)
𝑘(log(𝑝𝑣))

𝑘

𝑘!
,

which tends to zero by the same argument as for the fifth term.

Proof of theorem 5.4. Throughout, ℱ and ℒ𝑝 are equipped with the topology generated by
𝑑2,𝜇; ℱ 𝐼 and ℒ𝐼𝑝𝑣 ,𝑝𝑥 are equipped with the topology generated by 𝑑𝜋2,𝜇.

Consider the first assertion. Consistency is established by verifying the conditions of
lemma L.1:
(1) Holds by the assumption of the theorem.
(2) Holds by lemma L.3
(3) Identify ℒ𝑝 with the unit simplex Δ𝑝 in R𝑝 via the map Γ𝑝 : ℒ𝑝 → Δ𝑝 that sends∑︀𝑝

𝑗=1 𝛾𝑗Ψ
(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝)

)︀
→ (𝛾1, . . . , 𝛾𝑝) =: 𝛾. Γ𝑝 is well-defined. To see this, let

𝐹 ∈ ℒ𝑝 and suppose that 𝐹 can be represented by 𝛿 and 𝛾, so that
∑︀𝑝

𝑗=1(𝛾𝑗 −
𝛿𝑗)Ψ

(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝)

)︀
= 0. Then

∑︀𝑝
𝑗=1(𝛾𝑗 − 𝛿𝑗)

∫︀
𝑣𝑘𝜎−1

𝑝 𝜓
(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝)

)︀
𝑑𝑣 = 0 for

𝑘 = 0, . . . , 𝑝− 1. We show by induction that
∑︀𝑣

𝑖=1(𝑣𝑗,𝑝)
𝑘(𝛾𝑖− 𝛿𝑖) = 0 for 𝑘 = 0, . . . , 𝑝− 1.

For 𝑘 = 0

𝑝∑︁
𝑗=1

(𝛾𝑗 − 𝛿𝑗)

∫︁
𝑡0𝜎−1

𝑝 𝜓
(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝)

)︀
=

[︂∫︁
𝜎−1
𝑝 𝜓

(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝)

)︀
𝑑𝑡

]︂ 𝑝∑︁
𝑗=1

(𝛾𝑗 − 𝛿𝑗) = 0
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Since the integral in brackets is equal to 1, it holds that
∑︀𝑝

𝑗=1(𝛾𝑗−𝛿𝑗)(𝑣𝑗,𝑝)0 = 0. Suppose
that we have shown that

∑︀𝑝
𝑗=1(𝛾−𝛿𝑗)(𝑣𝑗,𝑝)

𝑙 = 0 for 𝑙 = 0, . . . , 𝑘 − 1. Then

0 =

𝑝∑︁
𝑗=1

(𝛾𝑗 − 𝛿𝑗)

∫︁
𝑣𝑘𝜎−1

𝑝 𝜓
(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝)

)︀
𝑑𝑣

=

𝑝∑︁
𝑗=1

(𝛾𝑗 − 𝛿𝑗)

∫︁
((𝑣 − 𝑣𝑗,𝑝) + 𝑣𝑗,𝑝)

𝑘𝜎−1
𝑝 𝜓

(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝)

)︀
𝑑𝑣

=

𝑝∑︁
𝑗=1

(𝛾𝑗 − 𝛿𝑗)
𝑘∑︁
𝑙=0

(︂
𝑘

𝑙

)︂
(𝑣𝑗,𝑝)

𝑙

∫︁
(𝑣 − 𝑣𝑗,𝑝)

𝑘−𝑙𝜎−1
𝑝 𝜓

(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝)

)︀
𝑑𝑣

=
𝑘∑︁
𝑙=0

(︂
𝑘

𝑙

)︂
𝜎𝑘−𝑙𝑝 𝜇𝑘−𝑙,𝜓

𝑝∑︁
𝑗=1

(𝛾𝑗 − 𝛿𝑗)(𝑣𝑗,𝑝)
𝑙

= 𝜇0,𝜓

𝑝∑︁
𝑗=1

(𝛾𝑗 − 𝛿𝑗)(𝑣𝑗,𝑝)
𝑘.

where 𝜇𝑗,𝜓 :=
∫︀
𝑣𝑗𝜓(𝑣)𝑑𝑣, and the last equality holds by the inductive assumption. Since

𝜇0,𝜓 = 1, we conclude that
∑︀𝑝

𝑖=1(𝛾𝑗 − 𝛿𝑗)(𝑣𝑗,𝑝)
𝑘 = 0 as desired.

Treated as a system in (𝛾𝑗−𝛿𝑗), the equations
∑︀𝑣

𝑖=1(𝑣𝑗,𝑝)
𝑘(𝛾𝑖−𝛿𝑖) = 0 for 𝑘 = 0, . . . , 𝑝−1

define a full-rank Vandermonde system of linear equations. It follows that 𝛾𝑗 = 𝛿𝑗.
For 𝐹 ∈ ℒ𝑝, define 𝑃𝑝(𝐹 ) = ‖Γ𝑝(𝐹 )‖22. 𝑃𝑝(𝐹 ) is well-defined since Γ𝑝 is.
Then by eq. (18), 𝐹𝑁(·|𝑥0) minimizes �̃�𝑁(𝐹 |𝑥0) + 𝜆𝑁𝑃𝑝(𝑁)(𝐹 ) over ℒ𝑝(𝑁).

(4) Holds by lemma K.1.
(5) By definition of ℒ𝑝, for any 𝐹 ∈ ℒ𝑝 it holds that ‖Γ(𝐹 )‖1 = 1. Then ‖Γ(𝐹 )‖2 ≤

‖Γ(𝐹 )‖1 = 1, and hence 𝑃𝑝(𝐹 ) = ‖Γ(𝐹 )‖22 ≤ 1. Since 𝜆𝑁 → 0 by the assumption of the
theorem, 𝜆𝑁𝑃𝑝

(︁
Π

(𝑥0)
𝑝 𝐹0

)︁
→ 0.

(6) Each moment estimate �̃�𝑘(𝑥0) is a continuous function of the data. Then by a standard
argument the estimated mixture coefficients �̃� of eq. (19) are a measurable function of
the data (with respect to the Borel 𝜎-algebra induced by the norm topology on Δ𝑝(𝑁)).
Let Γ𝑝 be as above and note that Γ𝑝 is a bijection between ℒ𝑝 and Δ𝑝. Observe that
𝐹𝑁 (𝑣|𝑥0) = Γ−1

𝑝 (�̃�). The map Γ−1
𝑝 : Δ𝑝 → ℒ𝑝 is continuous if ℒ𝑝 is equipped with the 𝐿1

topology.9 Since the 𝐿1 topology is stronger than the metric topology of 𝑑2,𝜇, Γ−1
𝑝 is also

continuous with respect to the latter topology. Measurability of 𝐹𝑁(𝑣|𝑥0) follows.
Thus, conditions of lemma L.1 hold and 𝑑2,𝜇

(︁
𝐹𝑁(·|𝑥0), 𝐹0(·|𝑥0)

)︁
𝑎.𝑠.−−→ 0. By lemma 5.3 we

conclude that sup𝑣∈R

⃒⃒⃒
𝐹𝑁(𝑣|𝑥0)− 𝐹 (𝑣|𝑥0)

⃒⃒⃒
𝑎.𝑠.−−→ 0.

9Norm Δ𝑝 with the ∞-norm. Then
⃦⃦
Γ−1
𝑝 (𝛿)− Γ−1

𝑝 (𝛾)
⃦⃦
𝐿1 is bounded by∫︀ ⃒⃒∑︀𝑝

=1(𝛾𝑗 − 𝛿𝑗)𝜎
−1
𝑝 𝜓

(︀
𝜎−1
𝑝 (𝑡− 𝑣𝑗,𝑝)

)︀⃒⃒
≤
∑︀𝑝
𝑖=1|𝛾𝑗 − 𝛿𝑗 |

∫︀
𝜎−1
𝑝 𝜓

(︀
𝜎−1
𝑝 (𝑡− 𝑣𝑗,𝑝)

)︀
𝑑𝑡 ≤ 𝑝 ‖𝛾 − 𝛿‖∞ .

95



The second assertion follows analogously by lemma L.2. We highlight the relevant changes:
(3) To replace Γ𝑝 let ℒ𝐼𝑝𝑣 ,𝑝𝑥 be as in eq. (27). Identify ℒ𝐼𝑝𝑣 ,𝑝𝑥 with (Δ𝑝𝑣)𝑝𝑥 via the map

Γ𝑝𝑣 ,𝑝𝑥 :
∑︀𝑝𝑣

𝑗=1

∑︀𝑝𝑥
𝑙=0 𝛾𝑗,𝑙𝑏𝑙,𝑝𝑥(𝑥)𝜎

−1
𝑝 𝜓

(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝𝑣)

)︀
→ 𝛾. Γ𝑝𝑣 ,𝑝𝑥 is well-defined. To see

this, suppose that the same 𝐹 ∈ ℒ𝐼𝑝𝑣 ,𝑝𝑥 can be represented by 𝛾 and 𝛿, that is, that

𝑝𝑣∑︁
𝑗=1

𝑝𝑥∑︁
𝑙=0

(𝛾𝑗,𝑙 − 𝛿𝑗,𝑙)𝑏𝑙,𝑝𝑥(𝑥)Ψ
(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝𝑣)

)︀
= 0.

Evaluate
∫︀
𝑣𝑘
∑︀𝑝𝑣

𝑗=1

∑︀𝑝𝑥
𝑙=0(𝛾𝑗,𝑙 − 𝛿𝑗,𝑙)𝑏𝑙,𝑝𝑥(𝑥)𝜎

−1
𝑝 𝜓

(︀
𝜎−1
𝑝 (𝑣 − 𝑣𝑗,𝑝𝑣)

)︀
𝑑𝑣 for 𝑘 = 0, . . . , 𝑝𝑣 − 1.

As above, we obtain that
∑︀𝑝𝑣

𝑗=1

∑︀𝑝𝑥
𝑙=0(𝛾𝑗,𝑙 − 𝛿𝑗,𝑙)𝑏𝑙,𝑝𝑥(𝑥)𝑣

𝑘
𝑗,𝑝𝑣 = 0. Rearranging,

𝑝𝑥∑︁
𝑙=0

𝑏𝑙,𝑝𝑥(𝑥)

𝑝𝑣∑︁
𝑗=1

(𝛾𝑗,𝑙 − 𝛿𝑗,𝑙)𝑣
𝑘
𝑗,𝑝𝑣 = 0, 𝑘 = 0, . . . , 𝑝𝑣 − 1.

Since {𝑏0,𝑝𝑥 , . . . , 𝑏𝑝𝑥,𝑝𝑥} is a linearly independent collection of functions, we conclude
that for each 𝑙 = 0, . . . , 𝑝𝑥 it holds that

∑︀𝑝𝑣
𝑗=1(𝛾𝑗,𝑙 − 𝛿𝑗,𝑙)𝑣

𝑘
𝑗,𝑝𝑣 = 0. This is a full-rank

Vandermonde system of equations in (𝛾1,𝑙−𝛿1,𝑙, . . . , 𝛾𝑝𝑣 ,𝑙−𝛿𝑝𝑣 ,𝑙). It has the unique solution
𝛾𝑗,𝑙 = 𝛿𝑗,𝑙 for 𝑗 = 1, . . . , 𝑝𝑣. The same holds for all 𝑙 = 0, . . . , 𝑝𝑥. Thus 𝛾 = 𝛿.
Now we define a suitable penalty. Define 𝑃 𝐼

𝑝𝑣 ,𝑝𝑥(𝐹 ) =
∑︀𝑝𝑣

𝑗=1

∑︀𝑝𝑥
𝑙=0 𝛾

2
𝑗,𝑙 where 𝛾𝑗,𝑙 be the

(𝑗, 𝑙)th element of Γ𝑝𝑣 ,𝑝𝑥(𝐹 ) .
(4) We use lemma K.2 in place of lemma K.1.
(5) Let 𝐹 ∈ ℒ𝐼𝑝𝑣 ,𝑝𝑥 . Let 𝛾𝑗,𝑙 = Γ𝑝𝑣 ,𝑝𝑥(𝐹 ) for 𝑓 ∈ ℒ𝐼𝑝𝑣 ,𝑝𝑥 . Observe that 𝛾𝑗,𝑙 ∈ [0, 1] for all

𝑗, 𝑙. Then 𝑃 𝐼
𝑝𝑣 ,𝑝𝑥(𝐹 ) =

∑︀𝑝𝑣
𝑗=1

∑︀𝑝𝑥
𝑙=0 𝛾

2
𝑗,𝑙 ≤

∑︀𝑝𝑣
𝑗=1

∑︀𝑝𝑥
𝑙=0 𝛾𝑗,𝑙 = 𝑝𝑥 where the final equality

holds by definition of ℒ𝐼𝑝𝑣 ,𝑝𝑥 . Now by the assumption on 𝜆𝐼𝑁 = 𝑜(𝑝−1
𝑥 ) we conclude that

sup𝐹∈ℒ𝑝𝑣,𝑝𝑥
𝜆𝐼𝑁𝑃

𝐼
𝑝𝑣 ,𝑝𝑥 (𝐹 ) → 0.

By lemma L.2 𝑑𝜋2,𝜇
(︁
𝐹𝑁 , 𝐹0

)︁
𝑎.𝑠.−−→ 0. The second conclusion follows from lemma 5.3.
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