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This supplementary online appendix provides additional theoretical, numerical, and empirical
results. Section OA.1 illustrates how the setting and the results of the paper can be extended to
cover unbalanced data. In section OA.2 we compute rate conditions of theorems 3.1 and 3.3 for
several general examples of distributions of 𝜃 and the estimation noise. These examples serve to
further motivate the rate conditions of propositions 3.2 and 3.4. In section OA.3, we provide a
deterministic version of conditions (2) and (3) of theorem 3.3. Additional simulation results are
presented in section OA.4. We expand on the simulation study of section 5 by considering additional
distributions for 𝜃 and the idiosyncratic disturbances. In all cases, the results closely match those
reported in the main text. Additionally, we consider performance of several corrected estimators
for extreme quantiles. We find that the median-unbiased estimator of example 4 with subsampled
critical values offers improvements over the raw sample quantile. The extrapolation estimator also
provides improved performance, but is less robust to sign of 𝛾 and the quantile considered. Finally,
in section OA.5 we provide additional results for our empirical application. We discuss in detail
estimation of the EV index 𝛾 and show robustness of our results by examining all the methods for
constructing confidence intervals considered in the paper.
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OA.1 Unbalanced Data

In some applications, the data available may be unbalanced. For example, in panel data analysis,
the time series for some units may be shorter or longer, while in a meta-analysis setting, individual
studies may have varying sample sizes.

In this section we discuss how to handle unbalanced data under the assumption that the minimal
individual sample size tends to infinity.

Formally, let the observable 𝜗𝑖,𝑇 be generated as

𝜗𝑖,𝑇 = 𝜃𝑖 + 1
𝑇 𝑝

𝑖

𝜀𝑖,𝑇𝑖 , (OA.1.1)

where 𝑇𝑖 is the individual sample size of unit 𝑖 and 𝜀𝑖,𝑇𝑖 = 𝑂𝑝(1). Define 𝑇, 𝜆𝑖 so that 𝑇𝑖 = 𝜆𝑖𝑇 ,
𝜆𝑖 ≥ 1 and 𝑇 → ∞. Observe that by construction 𝑇𝑖 ≥ 𝑇 , and so 𝑇 can be interpreted as a minimal
sample size.

To conduct inference on extreme quantiles of 𝐹 when the observable 𝜗𝑖,𝑇 are generated by
(OA.1.1), we represent eq. (OA.1.1) as a special case of the setup studied in the main text. We
assume that the individual sample size 𝑇𝑖 = 𝜆𝑖𝑇 is also random. Define 𝜀𝑖,𝑇 = 𝜆−𝑝

𝑖 𝜀𝑖,𝑇𝑖 . With this
definition we can write

𝜗𝑖,𝑇 = 𝜃𝑖 + 1
𝑇 𝑝

𝜀𝑖,𝑇 .

The setup can be intuitively interpreted in a hierarchical manner: first 𝜃𝑖 is drawn, then the
observed sample size 𝑇𝑖 (𝜆𝑖) is drawn for 𝑖, then with that 𝑇𝑖 we draw 𝜀𝑖,𝑇𝑖 from 𝐺𝑇𝑖 . Finally, the
components are combined into the observable 𝜗𝑖,𝑇 as in eq. (OA.1.1).

Define �̃�𝑇 to be the cdf of 𝜀𝑖,𝑇 . Then all the results established in the main text apply with �̃�𝑇

in place of 𝐺𝑇 and 𝑇 → ∞. It is also easy to apply sufficient conditions of propositions 3.2 and 3.4
if moment conditions are available for 𝐺𝑇 . For example, let sup𝑇 E|𝜀𝑖,𝑇 |𝛽 < ∞ for some 𝛽. Since
𝜆−𝑝

𝑖 ≤ 1 a.s., we obtain that sup𝑇 E|𝜀𝑖,𝑇 | < ∞ (intuitively, the bound on tails of 𝐺𝑇 is uniform, and
tails of �̃�𝑇 are an average of tails of 𝐺𝑇 , averaging over the distribution of sample sizes).

Remark 1. The assumption that the sample size 𝑇𝑖 is random is not restrictive. 𝑇𝑖 can be related
to 𝜃𝑖 in a complex manner, and we do not restrict the joint distribution of 𝜃𝑖 and 𝜀𝑖,𝑇 , similarly to
the main text. Such dependence might be present in applications. Consider an economic example:
let 𝑖 index firms, and let 𝜃𝑖 be firm productivity. If firms with low productivity go bankrupt and
exit the market at higher rates than more productive firms, then firms with lower 𝜃𝑖 will tend to
have lower sample sizes 𝑇𝑖 available. Our setup allows such relationships, under the assumption
that minimal sample size is still appropriately large.

OA.2 Example Rate Conditions

To build intuition and motivate the form of the sufficient rate conditions of propositions 3.2 and 3.4,
we consider three examples. The distributions considered for 𝐹 and 𝐺𝑇 are quite general. First,
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if 𝐹 satisfies assumption 2 with 𝛾 ̸= 0, it differs from one of the cdfs of examples 1 and 3 below
only by a slowly varying function. Example 2 provides a standard example of a distribution 𝐹

that satisfies assumption 2 with 𝛾 = 0. Second, we consider two different cases for 𝐺𝑇 : 𝐺𝑇 only
assumed to possess a given number of finite moments, and 𝐺𝑇 normal, reflecting the assumptions of
proposition 3.2.

We remark that we use the setting of example 1 in our simulation study in the main text.
Similar simulation results for the settings of examples 2-3 are provided in section OA.4 of this online
appendix.

OA.2.1 Examples of Rate Conditions for EVT (Theorem 3.1)

We consider two specifications for 𝐺𝑇 . First, let 𝐺𝛽,𝑇 be defined by its density 𝑔𝛽(𝑥) = (𝛽/2)(1 +
|𝑥 − 𝜇𝑇 |)−𝛽−1, 𝛽 > 0, 𝑥 ∈ R where 𝜇𝑇 is a bounded sequence. 𝐺𝛽,𝑇 is a symmetric distribution with
median 𝜇𝑇 and moments of order < 𝛽. Second, let 𝐺𝑁𝑜𝑟𝑚𝑎𝑙,𝑇 be 𝑁(𝜇𝑇 , 𝜎2

𝑇 ) where (𝜇𝑇 , 𝜎2
𝑇 ) is a

bounded sequence.

Example 1 (𝛾 > 0). Let the cdf of 𝜃𝑖 be given by 𝐹𝐹 𝑟,𝜅(𝜃) = 1 − (𝜃 + 1)−𝜅, 𝜅 > 0, 𝜃 ∈ [0, ∞). 𝐹𝐹 𝑟,𝜅

satisfies assumption 2 with 𝛾 = 1/𝜅 > 0. A convenient choice of 𝑎𝑁 and 𝑏𝑁 is 𝑎𝑁 = 𝑁1/𝜅 −1, 𝑏𝑁 = 0.
With this choice 𝜃𝑁,𝑁 /(𝑁1/𝜅 − 1) is asymptotically distributed as a Fréchet random variable.

First, let 𝐺𝑇 = 𝐺𝛽,𝑇 . Then (TE-Inf) and (TE-Sup) hold if 𝑁1/𝛽−1/𝜅(log(𝑇 ))1/𝛽/𝑇 𝑝 → 0. If
𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 , the condition trivializes to the requirement that

√︀
log(𝑁)/(𝑁1/𝜅𝑇 𝑝) → 0, which

always holds. We remark that the conditions hold independently of choice of (𝑎𝑁 , 𝑏𝑁 ) as long as
(𝜃𝑁,𝑁 − 𝑏𝑁 )/𝑎𝑁 converges to a non-degenerate random variable. This result follows as in the proof
of proposition 3.2.

Observe that there is no restriction on magnitudes of 𝑁 and 𝑇 if 𝜀𝑖,𝑇 has more than 𝜅 moments.
This result is intuitive, as in this case 𝐹 has a heavier tail which is more pronounced in the data
and dominates the tail of 𝐺𝑇 .

Example 2 (𝛾 = 0). Let 𝐹 = 𝐹𝐺𝑢,𝜆 be the exponential distribution with parameter 𝜆. 𝐹𝐺𝑢,𝜆

satisfies assumption 2 with 𝛾 = 0. If 𝑎𝑁 = 1, 𝑏𝑁 = log 𝑁/𝜆, then (𝜃𝑁,𝑁 − log 𝑁/𝜆) is asymptotically
distributed as a Gumbel random variable. Proceeding as in the preceding example, we obtain that if
𝐺𝑇 = 𝐺𝛽,𝑇 , conditions (TE-Inf) and (TE-Sup) hold if 𝑁1/𝛽(log(𝑇 ))1/𝛽/𝑇 𝑝 → 0. If 𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 ,
the condition relaxes to

√︀
log(𝑁)/𝑇 𝑝 → 0. Unlike example 1, there are rate restrictions on 𝑁 and

𝑇 even if 𝐺𝑇 has exponentially light tails. How stringent the rate conditions are depends on how
many moments 𝜀𝑖,𝑇 is assumed to have. For example, if we are only willing to assume that 𝜀𝑖,𝑇 has
8 moments and if 𝑝 = 1/2, it is sufficient that 𝑁 log(𝑇 )/𝑇 4 → 0.

Example 3 (𝛾 < 0). Let 𝜃𝐹 < ∞ and let the cdf of 𝜃𝑖 be given by 𝐹𝑊,𝛼(𝜃) = 1−((𝜃𝐹 − 𝜃)/𝜃𝐹 )𝛼 , 𝛼 >

0, 𝜃 ∈ [0, 𝜃𝐹 ], 𝜃𝐹 = 𝐹 −1(1) < ∞. 𝐹𝑊,𝛼 satisfies assumption 2 with 𝛾 = −1/𝛼 < 0. If 𝑎𝑁 =
𝜃𝐹 /𝑁1/𝛼, 𝑏𝑁 = 𝜃𝐹 , then 𝑁1/𝛼(𝜃𝑁,𝑁 − 𝜃𝐹 )/𝜃𝐹 is asymptotically distributed as a Weibull random
variable. If 𝐺𝑇 = 𝐺𝛽,𝑇 , then (TE-Inf) and (TE-Sup) hold if 𝑁1/𝛽+1/𝛼(log(𝑇 ))1/𝛽/𝑇 𝑝 → 0. If
𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 , it is sufficient that 𝑁1/𝛼

√︀
log(𝑁)/𝑇 𝑝 → 0. Since 𝛼 > 0, the rate conditions of this
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example impose a stronger restriction on magnitude of 𝑁 than conditions of examples 1 and 2. For
example, let 𝛼 = 1, then 𝐹𝑊,1 is the uniform distribution on [0, 𝜃𝐹 ]. If estimation noise is normal
and 𝑝 = 1/2, then the conditions are satisfied if 𝑁2√︀log(𝑁)/𝑇 → 0

The rate restrictions derived in examples 1-3 can be written in common form using the EV index
𝛾. If 𝐺𝑇 = 𝐺𝛽,𝑇 , all conditions can be written as 𝑁1/𝛽−𝛾(log(𝑇 ))1/𝛽/𝑇 𝑝 → 0. If 𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 ,
the conditions can be equivalently written as 𝑁−𝛾

√︀
log(𝑁)/𝑇 𝑝 → 0. Note the similarity to the rate

conditions of proposition 3.2.

OA.2.2 Examples of Rate Conditions for IVT (Theorem 3.3)

The distributions of examples 1-3 satisfy assumption 4, and hence theorem 3.3 can be applied.

Example 5 (𝛾 > 0, continued). The normalizing constants of theorem 3.3 are 𝐹 −1
𝐹 𝑟,𝜅(1 − 𝑘/𝑁) =

(1 − 𝑘/𝑁) (𝑁/𝑘)1/𝜅 − 1 and 𝑐𝑁 = 𝜅−1 (𝑁/𝑘)1/𝜅. Suppose we set 𝑘 = 𝑁 𝛿, 𝛿 ∈ (0, 1). If 𝐺𝑇 = 𝐺𝛽,𝑇 ,
then (2) and (3) hold if for some 𝜈 > 0 𝑁 𝛿/2(1+1/𝛽)+(1−𝛿)(1/𝛽−1/𝜅)+𝜈/𝛽/𝑇 𝑝 → 0. If 𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 ,
then it is sufficient that 𝑁 𝛿/2+(1−𝛿)(−1/𝜅)√︀log(𝑁)/𝑇 𝑝 → 0 for conditions (2) and (3) to be satisfied.

Example 6 (𝛾 = 0, continued). In this case the constants are simple: 𝐹 −1
𝐺𝑢,𝜆 (1 − 𝑘/𝑁) =

log(𝑁/𝑘)/𝜆 and 𝑐𝑁 = 𝜆−1. Let 𝑘 = 𝑁 𝛿, 𝛿 ∈ (0, 1). If 𝐺𝑇 = 𝐺𝛽,𝑇 , a sufficient condition for
conditions (2) and (3) is that for some 𝜈 > 0 𝑁 𝛿/2(1+1/𝛽)+(1−𝛿)(1/𝛽)+𝜈/𝛽/𝑇 𝑝 → 0. Similarly, if
𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 , it is sufficient that 𝑁 𝛿/2√︀log(𝑁)/𝑇 𝑝 → 0.

Example 7 (𝛾 < 0, continued). The normalizing constants are given by 𝐹 −1
𝑊,𝛼 (1 − 𝑘/𝑁) = 𝜃𝐹 −

𝜃𝐹 (𝑘/𝑁)1/𝛼 and 𝑐𝑁 = (𝜃𝐹 /𝛼) (𝑘/𝑁)1/𝛼. Let 𝑘 = 𝑁 𝛿, 𝛿 ∈ (0, 1). If 𝐺𝑇 = 𝐺𝛽,𝑇 , it is sufficient that
𝑁 𝛿/2(1+1/𝛽)+(1−𝛿)(1/𝛼+1/𝛽)+𝜈/𝛽/𝑇 𝑝 → 0 for conditions (2) and (3) to hold; if 𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 it is
sufficient that 𝑁 𝛿/2+(1−𝛿)(1/𝛼)√︀log(𝑁)/𝑇 𝑝 → 0.

Observe that all conditions in the above examples can be written in a common form:

𝐺𝛽,𝑇 : 𝑁 𝛿/2(1+1/𝛽)+(1−𝛿)(−𝛾+1/𝛽)+𝜈/𝛽

𝑇 𝑝
→ 0, 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 : 𝑁 𝛿/2+(1−𝛿)(−𝛾)√︀log(𝑁)

𝑇 𝑝
→ 0,

where 𝜈 is any positive number. Again note the similar to the rate conditions of proposition 3.4.

OA.2.3 Verification of Examples

In this section we provide a detailed verification of the claims made in sections OA.2.1-OA.2.2.

Useful Expressions

For easy reference, we collect all the expressions that we use in verifying the examples.
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Distributions The three example cdfs are

𝛾 < 0 𝐹𝑊,𝛼(𝜃) = 1 −
(︂

𝜃𝐹 − 𝜃

𝜃𝐹

)︂𝛼

, 𝛼 > 0, 𝜃 ∈ [0, 𝜃𝐹 ], 𝜃𝐹 < ∞,

𝛾 > 0 𝐹𝐹 𝑟,𝜅(𝜃) = 1 − (𝜃 + 1)−𝜅, 𝜅 > 0, 𝜃 ∈ [0, ∞),

𝛾 = 0 𝐹𝐺𝑢,𝜆(𝜃) = 1 − 𝑒−𝜆𝑥, 𝜃 ∈ [0, ∞).

Densities:

𝑓𝑊,𝛼(𝜃) = 𝛼

𝜃𝐹

(︂
𝜃𝐹 − 𝜃

𝜃𝐹

)︂𝛼−1
, 𝜃 ∈ [0, 𝜃𝐹 ] ,

𝑓𝐹 𝑟,𝜅(𝜃) = 𝜅(𝜃 + 1)−𝜅−1 ,

𝑓𝐺𝑢,𝜆 = 𝜆𝑒−𝜆𝑥.

Two specifications for cdf of estimation noise:

𝐺𝛽,𝑇 (𝑥) =

⎧⎨⎩1 − 1
2(1 + (𝑥 − 𝜇𝑇 ))−𝛽, 𝑥 ≥ 𝜇𝑇

1
2(1 − (𝑥 − 𝜇𝑇 ))−𝛽 𝑥 < 𝜇𝑇 ,

𝐺𝑁𝑜𝑟𝑚𝑎𝑙,𝑇 (𝑥) = Φ
(︂

𝑥 − 𝜇𝑇

𝜎𝑇

)︂
.

The distribution 𝐺𝛽,𝑇 can be equivalently specified through its density

𝑔𝛽(𝑥) = 𝛽

2 (1 + |𝑥 − 𝜇𝑇 |)−𝛽−1 .

Inverses We will also use the following expressions for quantiles of the functions we consider and
the corresponding expressions for the auxiliary function 𝑈𝐹 (see eq. (A.1) in the proof appendix):

𝐹 −1
𝑊,𝛼(𝑦) = 𝜃𝐹 − 𝜃𝐹 (1 − 𝑦)1/𝛼,

𝑈𝐹𝑊,𝛼
(𝑦) = 𝐹 −1

(︂
1 − 1

𝑦

)︂
= 𝜃𝐹 − 𝜃𝐹 𝑦−1/𝛼,

𝐹 −1
𝐹 𝑟,𝜅(𝑦) = (1 − 𝑦)−1/𝜅 − 1,

𝑈𝐹𝐹 𝑟,𝜅
(𝑦) = 𝑦1/𝜅 − 1,

𝐹 −1
𝐺𝑢,𝜆(𝑦) = − log(1 − 𝑦)

𝜆
,

𝑈𝐺𝑢,𝜆 = log 𝑦

𝜆
,

𝐺−1
𝛽,𝑇 (𝜏) =

⎧⎨⎩(2(1 − 𝜏))−1/𝛽 − 1 + 𝜇𝑇 𝜏 ≥ 1
2 ,

1 − (2𝜏)−1/𝛽 + 𝜇𝑇 𝜏 < 1
2 .
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Verification of Conditions (TE-Inf) and (TE-Sup) of Theorem 3.1

Here we provide the details for examples 1-3 for conditions of theorem 3.1.
Fix 𝜏 ∈ (0, ∞) and define 𝑠𝜏,𝑁,𝑇 and 𝑆𝜏,𝑁,𝑇 as

𝑆𝜏,𝑁,𝑇 (𝑢) = 1
𝑎𝑁

(︂
𝐹 −1

(︂
1 − 1

𝑁𝜏
+ 𝑢

)︂
− 𝐹 −1

(︂
1 − 1

𝑁𝜏

)︂
+ 1

𝑇 𝑝
𝐺−1

𝑇 (1 − 𝑢)
)︂

, (OA.2.1)

𝑠𝜏,𝑁,𝑇 (𝑢) = 1
𝑎𝑁

(︂
𝐹 −1

(︂
1 − 1

𝑁𝜏
− 𝑢

)︂
− 𝐹 −1

(︂
1 − 1

𝑁𝜏

)︂
+ 1

𝑇 𝑝
𝐺−1

𝑇 (𝑢)
)︂

.

We follow the same strategy for all three examples. The approach is similar to that of the proof
of proposition 3.2. First, we construct a sequence 𝑢𝑆,𝜏,𝑁,𝑇 ∈ [0, 1/𝑁𝜏 ] such that 𝑆𝜏,𝑁,𝑇 (𝑢𝑆,𝜏,𝑁,𝑇 ) → 0
under certain conditions on 𝑁 and 𝑇 . Since inf𝑢∈[0,1/𝑁𝜏 ] 𝑆𝜏,𝑁,𝑇 (𝑢) ≤ 𝑆𝜏,𝑁,𝑇 (𝑢𝑆,𝜏,𝑁,𝑇 ), we obtain
that

lim sup
𝑁,𝑇 →∞

inf
𝑢∈[0, 1

𝑁𝜏 ]
𝑆𝜏,𝑁,𝑇 (𝑢) ≤ 0.

Second, we construct a sequence 𝑢𝑠,𝜏,𝑁,𝑇 ∈ [0, 𝜖] for some 𝜖 ∈ (0, 1) such that 𝑠𝜏,𝑁,𝑇 (𝑢𝑠,𝜏,𝑁,𝑇 ) → 0,
which implies that

lim inf
𝑁,𝑇 →∞

sup
𝑢∈[0,𝜖]

𝑠𝜏,𝑁,𝑇 (𝑢) ≥ 0.

Last, in all cases 𝑎𝑁 > 0, hence by lemma A.3 it eventually holds that

sup
𝑢∈[0,𝜖]

𝑠𝜏,𝑁,𝑇 (𝑢) ≤ sup
𝑢∈[0,1−1/𝑁𝜏 ]

𝑠𝜏,𝑁,𝑇 (𝑢) ≤ inf
𝑢∈[0,1/𝑁𝜏 ]

𝑆𝜏,𝑁,𝑇 (𝑢).

This implies that
lim sup
𝑁,𝑇 →∞

sup
𝑢∈[0,𝜖]

𝑠𝜏,𝑁,𝑇 (𝑢) ≤ lim inf
𝑁,𝑇 →∞

inf
𝑢∈[0, 1

𝑁𝜏 ]
𝑆𝜏,𝑁,𝑇 (𝑢).

Combining the three observations, and the trivial observation that lim inf{. . .} ≤ lim sup{. . .}, we
conclude that

lim
𝑁,𝑇 →∞

sup
𝑢∈[0,𝜖]

𝑠𝜏,𝑁,𝑇 (𝑢) = lim
𝑁,𝑇 →∞

inf
𝑢∈[0, 1

𝑁𝜏 ]
𝑆𝜏,𝑁,𝑇 (𝑢) = 0.

The above holds for any 𝜏 ∈ (0, ∞), and so the conditions (TE-Inf) and (TE-Sup) of theorem 3.1
hold.

Example 1, page 4 Let 𝜃 ∼ 𝐹𝐹 𝑟,𝜅. Take 𝑎𝑁 = 𝑁1/𝜅 − 1, 𝑏𝑁 = 0.
We examine the infimum condition for a fixed 𝜏 ∈ (0 ∞). Pick

𝑢𝑆,𝜏,𝑁,𝑇 = 1
𝑁𝜏

1
log(𝑇 ) + 1 ∈

[︂
0, 1 − 1

𝑁𝜏

]︂
. (OA.2.2)

We show that 𝑆𝜏,𝑁,𝑇 (𝑢𝑆,𝜏,𝑁,𝑇 ) → 0, where 𝑆𝜏,𝑁,𝑇 is defined in eq. (OA.2.1).
We will separately show that the 𝐺𝑇 term and the pair of 𝐹 −1

𝐹 𝑟,𝜅 terms decay to zero.
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Using expressions for quantiles given in section OA.2.3, we obtain that

𝐹 −1
𝐹 𝑟,𝜅

(︂
1 − 1

𝑁𝜏

)︂
= (𝑁𝜏)1/𝜅 − 1,

𝐹 −1
𝐹 𝑟,𝜅

(︂
1 − 1

𝑁𝜏

log(𝑇 )
log(𝑇 ) + 1

)︂
=
(︂

𝑁𝜏
log(𝑇 ) + 1

log(𝑇 )

)︂1/𝜅

− 1.

Then as 𝑁, 𝑇 → ∞

1
𝑁1/𝜅 − 1

[︂
𝐹 −1

𝐹 𝑟,𝜅

(︂
1 − 1

𝑁𝜏

)︂
− 𝐹 −1

𝐹 𝑟,𝜅

(︂
1 − 1

𝑁𝜏

log(𝑇 )
log(𝑇 ) + 1

)︂]︂

= 𝜏1/𝜅 − 𝜏1/𝜅
(︂ log(𝑇 ) + 1

log(𝑇 )

)︂1/𝜅

→ 0 .

This convergence holds regardless of relative values of 𝑁 and 𝑇 .
Suppose 𝐺𝑇 = 𝐺𝛽,𝑇 . Using the expression for quantiles of 𝐺𝛽,𝑇 given is section OA.2.3, we

obtain that

1
𝑎𝑁

1
𝑇 𝑝

𝐺−1
𝛽,𝑇 (1 − 𝑢𝑆,𝜏,𝑁,𝑇 )

= 1
𝑁1/𝜅 − 1

1
𝑇 𝑝

𝐺−1
𝛽,𝑇

(︂
1 − 1

𝑁𝜏

1
log(𝑇 ) + 1

)︂
∼ 𝑁1/𝛽−1/𝜅(log(𝑇 ))1/𝛽

𝑇 𝑝
+ 𝜇𝑇

𝑁1/𝜅𝑇 𝑝
.

Since 𝜇𝑇 is a bounded sequence, we conclude that for lim sup𝑁,𝑇 →∞ inf𝑢∈[0,𝜖] 𝑆𝜏,𝑁,𝑇 (𝑢) to be equal
to zero, it is sufficient that

𝑁1/𝛽−1/𝜅(log(𝑇 ))1/𝛽

𝑇 𝑝
→ 0. (OA.2.3)

Observe that this condition does not depend on the value of 𝜏 .
Now suppose 𝐺𝑇 = 𝐺𝑁𝑜𝑟𝑚𝑎𝑙,𝑇 . Since 𝜎𝑇 is a bounded sequence, we can use the following simple

approximation for quantiles of a normal random variable: 𝐺−1
𝑁𝑜𝑟𝑚𝑎𝑙,𝑇 (1 − 𝑐/𝑁) ∼

√︀
log(𝑁) + 𝜇𝑇 .

Then
1

𝑁1/𝜅 − 1
1

𝑇 𝑝
𝐺−1

𝑁𝑜𝑟𝑚𝑎𝑙,𝑇

(︂
1 − 1

𝑁𝜏

(︂
1 − log(𝑇 )

log(𝑇 ) + 1

)︂)︂
∼
√︀

log(𝑁)
𝑁1/𝜅𝑇 𝑝

+ 𝜇𝑇

𝑁1/𝜅𝑇 𝑝
.

Since 𝜇𝑇 is bounded, for the 𝐺𝑇 term to decay in this case, it is sufficient that√︀
log(𝑁)

𝑁1/𝜅𝑇 𝑝
→ 0.

Now we turn to 𝑠𝜏,𝑁,𝑇 , associated with the supremum condition. Pick

𝑢𝑠,𝜏,𝑁,𝑇 = 1
𝑁𝜏

1
log(𝑇 ) . (OA.2.4)
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Observer that 𝑢𝑠,𝜏,𝑁,𝑇 eventually lies in [0, 𝜖] for any 𝜖 ∈ (0, 1) With this choice

1
𝑁1/𝜅 − 1

[︂
𝐹 −1

𝐹 𝑟,𝜅

(︂
1 − 1

𝑁𝜏

)︂
− 𝐹 −1

𝐹 𝑟,𝜅

(︂
1 − 1

𝑁𝜏

log(𝑇 ) + 1
log(𝑇 )

)︂]︂

= 𝜏1/𝜅 − 𝜏1/𝜅
(︂ log(𝑇 )

log(𝑇 ) + 1

)︂1/𝜅

→ 0 .

Now turn to the 𝐺𝑇 turns. If 𝐺𝑇 = 𝐺𝛽,𝑇 for all 𝑇 , we obtain as above

1
𝑎𝑁

1
𝑇 𝑝

𝐺−1
𝛽,𝑇 (𝑢𝑠,𝜏,𝑁,𝑇 )

= 1
𝑁1/𝜅 − 1

1
𝑇 𝑝

𝐺−1
𝛽,𝑇

(︂ 1
𝑁𝜏

1
log(𝑇 )

)︂
∼ 𝑁1/𝛽−1/𝜅(log(𝑇 ))1/𝛽

𝑇 𝑝
+ 𝜇𝑇 (log(𝑇 ))1/𝛽

𝑁1/𝜅𝑇 𝑝
.

Exactly as above, we conclude that for lim inf𝑁,𝑇 →∞ sup𝑢∈[0,𝜖] 𝑠𝜏,𝑁,𝑇 (𝑢) to be equal to zero, it is
sufficient that

𝑁1/𝛽−1/𝜅(log(𝑇 ))1/𝛽

𝑇 𝑝
→ 0.

The condition is the same as for the infimum.
If 𝐺𝑇 (𝑥) = 𝐺𝑁𝑜𝑟𝑚𝑎𝑙,𝑇 , we obtain exactly as above that

1
𝑁1/𝜅 − 1

1
𝑇 𝑝

𝐺−1
𝑁𝑜𝑟𝑚𝑎𝑙,𝑇

(︂ 1
𝑁𝜏

1
log(𝑇 )

)︂
∼
√︀

log(𝑁)
𝑁1/𝜅𝑇 𝑝

,

which again matches the condition derived for the infimum.
Finally, since 𝑎𝑁 > 0, lemma A.3 implies that

lim sup
𝑁,𝑇 →∞

sup
𝑢∈[0,𝜖]

𝑠𝜏,𝑁,𝑇 (𝑢) ≤ lim inf
𝑁,𝑇 →∞

inf
𝑢∈[0, 1

𝑁𝜏 ]
𝑆𝜏,𝑁,𝑇 (𝑢) .

If the above rate conditions on 𝑁 and 𝑇 hold, it holds that lim inf𝑁,𝑇 →∞ sup𝑢∈[0,𝜖] 𝑠𝜏,𝑁,𝑇 (𝑢) =
0, lim sup𝑁,𝑇 →∞ inf𝑢∈[0, 1

𝑁𝜏 ] 𝑆𝜏,𝑁,𝑇 (𝑢) = 0. We conclude that conditions TE-Inf and TE-Sup hold.

On the role of the log factor The log(𝑇 ) factor in the definitions of 𝑢𝑠,𝜏,𝑁,𝑇 and 𝑢𝑆,𝜏,𝑁,𝑇 (eqs.
(OA.2.2) and (OA.2.4)) can by replaced by any other function ℎ(𝑁, 𝑇 ) of 𝑁 and 𝑇 that diverges to
infinity as 𝑁, 𝑇 → ∞. This can soften the (log(𝑇 ))1/𝛽 term arbitrarily; for example, if we use an
iterated log instead, the condition for the scaled 𝐺−1

𝛽,𝑇 term to decay becomes instead

𝑁1/𝛽(log(· · · log(𝑇 ))1/𝛽

𝑁1/𝜅𝑇 1/2 → 0 .

At the same time, such a function ℎ(𝑁, 𝑇 ) is necessary to eliminate the 𝐹 −1 terms in the limit.
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Too see this, consider again the 𝐹 −1 terms in 𝑆𝜏,𝑁,𝑇 . Pick 𝑢𝑆,𝜏,𝑁,𝑇 = 𝑐/(𝑁𝜏) where 𝑐 < 1 is fixed
constant. Then

1
𝑁1/𝜅 − 1

[︂
𝐹 −1

𝐹 𝑟,𝜅

(︂
1 − 1

𝑁𝜏

)︂
− 𝐹 −1

𝐹 𝑟,𝜅

(︂
1 − 1 − 𝑐

𝑁𝜏

)︂]︂
= 𝜏1/𝜅 − 𝜏1/𝜅(1 − 𝑐)−1/𝜅 ̸= 0,

and the 𝐹 −1
𝐹 𝑟,𝜅 terms do not decay.

Example 2, page 4 Let 𝜃𝑖 be exponential(𝜆). Let 𝑎𝑁 = 1. Consider 𝑆𝜏,𝑁,𝑇 and pick 𝑢𝑆,𝜏,𝑁,𝑇 as
in eq. (OA.2.2). Then since

𝐹 −1
𝐺𝑢,𝜆

(︂
1 − 1

𝑁𝜏

)︂
= log(𝑁𝜏)

𝜆
,

𝐹 −1
𝐺𝑢,𝜆

(︂
1 − 1

𝑁𝜏

log(𝑇 )
log(𝑇 ) + 1

)︂
=

log(𝑁𝜏) + log
(︁

log(𝑇 )+1
log(𝑇 )

)︁
𝜆

,

we obtain that

1
𝑎𝑁

[︂
𝐹 −1

𝐺𝑢,𝜆

(︂
1 − 1

𝑁𝜏

)︂
− 𝐹 −1

𝐺𝑢,𝜆

(︂
1 − 1

𝑁𝜏

log(𝑇 )
log(𝑇 ) + 1

)︂]︂
=

log
(︁

log(𝑇 )+1
log(𝑇 )

)︁
𝜆

→ 0.

Suppose that 𝐺𝑇 = 𝐺𝛽,𝑇 . Then

1
𝑎𝑁 𝑇 𝑝

𝐺−1
𝛽,𝑇

(︂
1 − 1

𝑁𝜏

(︂
1 − log(𝑇 )

log(𝑇 ) + 1

)︂)︂
∼ 𝑁1/𝛽(log(𝑇 ))1/𝛽

𝑇 𝑝
+ 𝜇𝑇 (log(𝑇 ))1/𝛽

𝑇 𝑝
.

Since 𝜇𝑇 is bounded, for the above expression to decay it is sufficient that

𝑁1/𝛽(log(𝑇 ))1/𝛽

𝑇 1/2 → 0.

Suppose that 𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 . Then

1
𝑎𝑁 𝑇 𝑝

𝐺−1
𝑛𝑜𝑟𝑚𝑎𝑙,𝑇

(︂
1 − 1

𝑁𝜏

(︂
1 − log(𝑇 )

log(𝑇 ) + 1

)︂)︂
∼
√︀

log(𝑁)
𝑇 𝑝

+ 𝜇𝑇

𝑇 𝑝
,

where the order equivalence holds because 𝜎𝑇 is a bounded sequence. If√︀
log(𝑁)
𝑇 𝑝

→ 0

the above term decays to zero for any 𝜏 , since 𝜇𝑇 is bounded.
The results for 𝑠𝜏,𝑁,𝑇 follow the same pattern and yield the same conditions on 𝑁 and 𝑇 .

Example 3, page 4 Let 𝜃 ∼ 𝐹𝑊,𝛼 and let 𝑎−1
𝑁 = 𝑁1/𝛼/𝜃𝐹 . Consider 𝑆𝜏,𝑁,𝑇 and let 𝑢𝑆,𝜏,𝑁,𝑇 be as

in eq. (OA.2.2). First examine the 𝐹 −1
𝑊,𝛼 terms. Using the expressions for inverses given in section
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OA.2.3, we obtain

𝐹 −1
𝑊,𝛼

(︂
1 − 1

𝑁𝜏

)︂
= 𝜃𝐹 − 𝜃𝐹

(︂ 1
𝑁𝜏

)︂1/𝛼

,

𝐹 −1
𝑊 𝛼

(︂
1 − 1

𝑁𝜏

log(𝑇 )
log(𝑇 ) + 1

)︂
= 𝜃𝐹 − 𝜃𝐹

(︂ 1
𝑁𝜏

log(𝑇 )
log(𝑇 ) + 1

)︂1/𝛼

,

hence

𝑁1/𝛼

𝜃𝐹

(︂
𝐹 −1

𝑊,𝛼

(︂
1 − 1

𝑁𝜏

)︂
− 𝐹 −1

𝑊,𝛼

(︂
1 − 1

𝑁𝜏

log(𝑇 )
log(𝑇 ) + 1

)︂)︂

∝ 1
𝜏1/𝛼

− 1
𝜏1/𝛼

(︂ log(𝑇 )
log(𝑇 ) + 1

)︂1/𝛼

→ 0.

Now turn to the 𝐺𝑇 term. First suppose that 𝐺𝑇 = 𝐺𝑇,𝛽. Then

1
𝑎𝑁

1
𝑇 𝑝

𝐺−1
𝛽,𝑇

(︂
1 − 1

𝑁𝜏

(︂
1 − log(𝑇 )

log(𝑇 ) + 1

)︂)︂
∼ 𝑁1/𝛼+1/𝛽(log(𝑇 ))1/𝛽

𝑇 𝑝
+ 𝜇𝑇 𝑁1/𝛼

𝑇 𝑝
.

Since 𝜇𝑇 is a bounded sequence, for the above expression to decay it is sufficient that

𝑁1/𝛼+1/𝛽(log(𝑇 ))1/𝛽

𝑇 1/2 → 0.

Now suppose that 𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 . Then exactly as in the preceding examples we get

1
𝑎𝑁

1
𝑇 𝑝

𝐺−1
𝑛𝑜𝑟𝑚𝑎𝑙,𝑇

(︂
1 − 1

𝑁𝜏

(︂
1 − log(𝑇 )

log(𝑇 ) + 1

)︂)︂
∼ 𝑁1/𝛼

√︀
log(𝑁)

𝑇 𝑝
+ 𝜇𝑇 𝑁1/𝛼

𝑇 𝑝
.

For this term to decay it is sufficient that

𝑁1/𝛼
√︀

log(𝑁)
𝑇 𝑝

→ 0.

The results for 𝑠𝜏,𝑁,𝑇 are obtained similarly and yield the same conditions on 𝑁 and 𝑇 .

Intermediate Order Statistics, Examples 5, 6, 7, Page 5

Example cdfs satisfy assumption 4 First we establish that cdfs 𝐹 of examples 5-7 satisfy
assumption 4, hence theorem 3.3 can be applied to the examples.

First consider 𝐹𝐹 𝑟,𝜅:

1 − 𝐹𝐹 𝑟,𝜅

𝑓𝐹 𝑟,𝜅
(𝜃) = (𝜃 + 1)−𝜅

𝜅(𝜃 + 1)−𝜅−1 = 1
𝜅

(𝜃 + 1),
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so (︃
1 − 𝐹𝐹 𝑟,𝜅

𝑓𝐹 𝑟,𝜅

)︃′

= 1
𝜅

= 𝛾.

Second, examine 𝐹𝐺𝑢,𝜆:
1 − 𝐹𝐺𝑢,𝜆

𝑓𝐺𝑢,𝜆
= 𝑒−𝜆𝑥

𝜆𝑒−𝜆𝑥
= 1

𝜆
,

so (︃
1 − 𝐹𝐺𝑢,𝜆

𝑓𝐺𝑢,𝜆

)︃′

= 0 = 𝛾.

Last, turn to 𝐹𝑊,𝛼:

1 − 𝐹𝑊,𝛼

𝑓𝑊,𝛼
(𝜃) =

(︁
𝜃𝐹 −𝜃

𝜃𝐹

)︁𝛼

𝛼
𝜃𝐹

(︁
𝜃𝐹 −𝜃

𝜃𝐹

)︁𝛼−1 = 1
𝛼

(𝜃𝐹 − 𝜃),

from which it follow that (︃
1 − 𝐹𝑊,𝛼

𝑓𝑊,𝛼

)︃′

= − 1
𝛼

= 𝛾

Approach to obtaining rate conditions We will convert the tail equivalence conditions (2)
and (3) into rate restrictions on 𝑁 and 𝑇 , along with conditions on choice of 𝑘. The overall approach
is the same as for theorem 3.1. Define 𝑠𝑁,𝑇 and 𝑆𝑁,𝑇 similarly to eq. (OA.2.1):

𝑆𝑁,𝑇 (𝑢) =
√

𝑘

𝑐𝑁

(︂
𝐹 −1(1 − 𝑈𝑘,𝑁 + �̃�𝑆,𝑁,𝑇 ) − 𝐹 −1 (1 − 𝑈𝑘,𝑁 ) + 1

𝑇 𝑝
𝐺−1

𝑇 (1 − �̃�𝑆,𝑁,𝑇 )
)︂

,

𝑠𝑁,𝑇 (𝑢) =
√

𝑘

𝑐𝑁

(︂
𝐹 −1(1 − 𝑈𝑘,𝑁 − �̃�𝑠,𝑁,𝑇 ) − 𝐹 −1 (1 − 𝑈𝑘,𝑁 ) + 1

𝑇 𝑝
𝐺−1

𝑇 (�̃�𝑠,𝑁,𝑇 )
)︂

.

where 𝑐𝑁 is as in theorem 3.3.
We construct a sequence �̃�𝑆,𝑁,𝑇 ∈ [0, 𝑈𝑘,𝑁 ,] such that 𝑆𝑁,𝑇 (�̃�𝑆,𝑁,𝑇 ) → 0 under certain condi-

tions on 𝑁 , 𝑇 and 𝑘. As previously, since inf𝑢∈[0,𝑈𝑘,𝑁 ] 𝑆𝑁,𝑇 (𝑢) ≤ 𝑆𝑁,𝑇 (�̃�𝑆,𝑁,𝑇 ), we obtain that
lim sup𝑁,𝑇 →∞ inf𝑢∈[0,𝑈𝑘,𝑁 ] 𝑆𝑁,𝑇 (𝑢) ≤ 0. A similar argument can be applied to 𝑠𝑁,𝑇 by picking
a point �̃�𝑠,𝑁,𝑇 that lies in [0, 𝜖] with probability approaching 1 (wpa1) to conclude that wpa1
lim inf𝑁,𝑇 →∞ sup𝑢∈[0,𝜖] 𝑠𝑁,𝑇 (𝑢) ≥ 0. Proceeding as above, we conclude that conditions (2) and (3)
of theorem 3.3 hold.

First, we establish the following elementary lemma.

Lemma OA.2.1. Let 𝛾 ∈ R, 𝜌 ≥ 0. ((𝑁𝜌 + 1)/𝑁𝜌)𝛾 − 1 = 𝑂(𝑁−𝜌) as 𝑁 → ∞.

Proof. If 𝛾 = 0, the result is immediate. Suppose that 𝛾 ̸= 0. Observe that ((𝑁𝜌 + 1)/𝑁𝜌)𝛾 − 1 =
𝑓(1/𝑁) for 𝑓(𝑥) = (1 + 𝑥𝜌)𝛾 − 1. Observe that 𝑓(0) = 0. Then by the mean value theorem(︂

1 + 1
𝑁𝜌

)︂𝛾

− 1 = 𝑓

(︂ 1
𝑁

)︂
− 1 = 1

𝑁
𝑓 ′
(︂ κ

𝑁

)︂
,κ ∈ [0, 1].
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Derivative of 𝑓 is given by 𝑓 ′(𝑥) = 𝜌𝛾 (1 + 𝑥𝜌)𝛾−1 𝑥𝜌−1, and so

⃒⃒⃒⃒ 1
𝑁

𝑓 ′
(︂ κ

𝑁

)︂⃒⃒⃒⃒
= 𝑂

(︃
1

𝑁𝜌

⃒⃒⃒⃒
⃒
(︂

1 + κ𝜌

𝑁𝜌

)︂𝛾−1
⃒⃒⃒⃒
⃒
)︃

= 𝑂
(︀
𝑁−𝜌)︀ .

Example 5, page 5 Let 𝐹 = 𝐹𝐹 𝑟,𝜅. Compute the normalizing functions of theorem 3.3.

𝐹 −1
𝐹 𝑟,𝜅

(︂
1 − 𝑘

𝑁

)︂
= 𝑈𝐹𝐹 𝑟,𝜅

(︂
𝑁

𝑘

)︂
=
(︂

𝑁

𝑘

)︂1/𝜅

− 1,

𝑐𝑁 = 𝑁

𝑘

⎛⎝(︃ 1
1 − 𝐹𝐹 𝑟,𝜅

)︃−1
⎞⎠′ (︂

𝑁

𝑘

)︂
= 𝑁

𝑘
𝑈 ′

𝐹𝐹 𝑟,𝜅

(︂
𝑁

𝑘

)︂
= 1

𝜅

(︂
𝑁

𝑘

)︂1/𝜅

.

Examine the infimum condition (3). Define for 𝜌 > 0 (below we discuss how 𝑘 influences choice
of �̃�𝑆,𝑁,𝑇 , including 𝜌):

�̃�𝑆,𝑁,𝑇 = 𝑈𝑘,𝑁
1

𝑁𝜌 + 1 ∈ [0, 𝑈𝑘,𝑁 ] . (OA.2.5)

We show that 𝑆𝑁,𝑇 (�̃�𝑆,𝑁,𝑇 ) → 0 by separately showing that both 𝐹 −1 terms decay and the 𝐺−1
𝑇

term decays, exactly as in section OA.2.3.
The 𝐹 terms satisfy (we suppress the 1/𝜅 multiplicative term of 𝑐𝑁 ):

𝑘1/2+1/𝜅

𝑁1/𝜅

[︂
𝐹 −1

𝐹 𝑟,𝜅

(︂
1 − 𝑈𝑘,𝑁

𝑁𝜌

𝑁𝜌 + 1

)︂
− 𝐹 −1

𝐹 𝑟,𝜅 (1 − 𝑈𝑘,𝑁 )
]︂

=𝑘1/2+1/𝜅

𝑁1/𝜅

⎡⎣(︃ 1
𝑈𝑘,𝑁

𝑁𝜌 + 1
𝑁𝜌

)︃1/𝜅

−
(︃

1
𝑈𝑘,𝑁

)︃1/𝜅
⎤⎦

=
(︂

𝑁

𝑘
𝑈𝑘,𝑁

)︂−1/𝜅 √
𝑘

[︃(︂
𝑁𝜌 + 1

𝑁𝜌

)︂1/𝜅

− 1
]︃

.

By corollary 2.2.2 in de Haan and Ferreira (2006) (𝑁/𝑘)𝑈𝑘,𝑁
𝑝−→ 1.1. Then the 𝐹 −1

𝐹 𝑟,𝜅 terms decay if
𝑘 is chosen such that

√
𝑘

[︃(︂
𝑁𝜌 + 1

𝑁𝜌

)︂1/𝜅

− 1
]︃

→ 0. (OA.2.6)

Also observe that the ((𝑁𝜌 + 1)/𝑁𝜌)1/𝜅 − 1 = 𝑂(𝑁−𝜌) by lemma OA.2.1. Thus, 𝑘 must satisfy
𝑘 = 𝑜(𝑁−𝜌). See below for choice of 𝜌 and 𝑘.

Now we turn to the 𝐺𝑇 terms. First suppose that 𝐺𝑇 = 𝐺𝛽,𝑇 . In this case

𝑘1/2+1/𝜅

𝑁1/𝜅

1
𝑇 𝑝

𝐺−1
𝛽,𝑇

(︂
1 − 𝑈𝑘,𝑁

1
𝑁𝜌 + 1

)︂
1Corollary 2.2.2 in de Haan and Ferreira (2006) asserts that (𝑘/𝑁)𝑌𝑁−𝑘,𝑁

𝑝−→ 1 where 𝑌𝑁−𝑘,𝑁 are order statistics
of {𝑌1, . . . , 𝑌𝑁 }, and 𝑃 (𝑌𝑖 ≤ 𝑦) = 1 − 1/𝑦 if 𝑦 ≥ 1 and zero otherwise. Observe that 𝑈𝑘,𝑁

𝑑= 1/𝑌𝑁−𝑘,𝑁 , the result
then follows. See also the proof of theorem 3.3
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∼ 𝑘1/2+1/𝜅

𝑁1/𝜅

𝑁𝜌/𝛽

𝑈
1/𝛽
𝑘,𝑁 𝑇 𝑝

=
(︂

𝑁

𝑘
𝑈𝑘,𝑁

)︂−1/𝛽 𝑘1/2+1/𝜅−1/𝛽𝑁𝜌/𝛽

𝑁1/𝜅−1/𝛽𝑇 𝑝
.

Since (𝑁/𝑘)𝑈𝑘,𝑁
𝑝−→ 1, the above expression decays if

𝑘1/2+1/𝜅−1/𝛽

𝑁1/𝜅−1/𝛽−𝜌/𝛽𝑇 𝑝
→ 0. (OA.2.7)

If 𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 , then we obtain that

𝑘1/2+1/𝜅

𝑁1/𝜅

1
𝑇 𝑝

𝐺−1
𝑛𝑜𝑟𝑚𝑎𝑙,𝑇

(︂
1 − 𝑈𝑘,𝑁

1
𝑁𝜌 + 1

)︂
= 𝑘1/2+1/𝜅

𝑁1/𝜅

1
𝑇 𝑝

𝐺−1
𝑛𝑜𝑟𝑚𝑎𝑙,𝑇

(︃
1 −

(︂
𝑁

𝑘
𝑈𝑘,𝑁

)︂
𝑁 𝛿

𝑁

1
𝑁𝜌 + 1

)︃

∼ 𝑘1/2+1/𝜅
√︀

log(𝑁)
𝑁1/𝜅

1
𝑇 𝑝

.

Thus, the scaled 𝐺 term decays if

𝑘1/2+1/𝜅
√︀

log(𝑁)
𝑁1/𝜅

1
𝑇 𝑝

→ 0. (OA.2.8)

If the above restrictions on 𝑘, 𝑁, 𝑇 hold, then 𝑆𝑁,𝑇 (�̃�𝑆,𝑁,𝑇 ) → 0. Same restrictions are implied
by the requirement 𝑠𝑁,𝑇 (�̃�𝑠,𝑁,𝑇 ) → 0 where �̃�𝑠,𝑁,𝑇 = 𝑈𝑘,𝑁 /𝑁𝜌. Then conditions (2) and (3) hold
by the same argument as above.

Rate conditions if 𝑘 = 𝑁 𝛿 Conditions (OA.2.6), (OA.2.7), and (OA.2.8) are general conditions
that jointly restrict 𝑘, 𝑁, 𝑇 . The conditions can be specialized based on the form of 𝑘. The leading
standard choice is 𝑘 = 𝑁 𝛿, 𝛿 < 1. In this case condition (OA.2.6) transforms to the requirement
that 𝑁 𝛿/2−𝜌 → 0, which holds if 𝜌 > 𝛿/2. Condition (OA.2.7) becomes

𝑁 𝛿/2+𝛿/𝜅−𝛿/𝛽

𝑁1/𝜅−1/𝛽−𝜌/𝛽𝑇 𝑝
= 𝑁 𝛿/2+(1−𝛿)(1/𝛽−1/𝜅)+𝜌/𝛽

𝑇 𝑝
→ 0.

Similarly, condition (OA.2.8) becomes

𝑁 𝛿/2+(1−𝛿)(−1/𝜅)√︀log(𝑁)
𝑇 𝑝

→ 0

Write 𝜌 = 𝛿/2 + 𝜈 where 𝜈 > 0, then the above condition transforms into

𝑁 𝛿/2(1+1/𝛽)+(1−𝛿)(1/𝛽−1/𝜅)+𝜈/𝛽

𝑇 𝑝
→ 0. (OA.2.9)
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In particular, observe that 𝜈 can be taken arbitrarily close to 0.

Choice of �̃�𝑆,𝑁,𝑇 The choice of �̃�𝑆,𝑁,𝑇 and the resulting rate conditions is driven by the desired
choice of 𝑘. This is most apparent in the derivation of (OA.2.6). If we instead use �̃�𝑆,𝑁,𝑇 =
𝑈𝑘,𝑁 /(log(𝑇 ) + 1) (similarly to section (OA.2.3)), then (OA.2.6) is replaced by

√
𝑘

[︃
1 −

(︂ log(𝑇 )
log(𝑇 ) + 1

)︂1/𝜅
]︃

→ 0

which is compatible with 𝑘 growing at most as 𝑜(log2(𝑇 )), typically a much stronger restriction
than 𝑘 = 𝑜(𝑁). This motivates our choice of �̃�𝑆,𝑁,𝑇 in eq. (OA.2.5) as that compatible with
𝑘 = 𝑁 𝛿, 𝛿 < 1.

Comparison with rate conditions for the EVT We remark that the rate conditions for
the extreme and intermediate value theorems will generally differ (compare eq. (OA.2.9) to eq.
(OA.2.3)). The fundamental reason is that the two theorems require asymptotic tail equivalence
to hold at different portions of the tail, with the discrepancy controlled by the magnitude of 𝑘.
The smaller the value of 𝛿, the closer condition (OA.2.9) is to condition (OA.2.3). This effect is
also visible in the choice of 𝑢𝑆,𝜏,𝑁,𝑇 and �̃�𝑆,𝑁,𝑇 : choice of 𝑢𝑆,𝜏,𝑁,𝑇 for the EVT has relatively little
importance, while choice of �̃�𝑆,𝑁,𝑇 for intermediate order statistics is tightly related to the chosen
value of 𝑘, as remarked above.

Example 6, page 5 Now let 𝐹 = 𝐹𝐺𝑢,𝜆. All the remarks above apply equally to this case, and
we limit ourselves to obtaining the corresponding rate conditions for the infimum.

First we compute the normalizing functions of theorem 3.3

𝐹 −1
𝐺𝑢,𝜆

(︂
1 − 𝑘

𝑁

)︂
= 𝑈𝐺𝑢,𝜆

(︂
𝑁

𝑘

)︂
= log(𝑁/𝑘)

𝜆
,

𝑐𝑁 = 𝑁

𝑘
×

⎛⎝(︃ 1
1 − 𝐹𝐺𝑢,𝜆

)︃−1
⎞⎠′ (︂

𝑁

𝑘

)︂
= 𝑁

𝑘
𝑈 ′

𝐺𝑢,𝜆

(︂
𝑁

𝑘

)︂
= 1

𝜆

𝑁

𝑘

𝑘

𝑁
= 1

𝜆
.

Pick �̃�𝑆,𝑁,𝑇 as in eq. (OA.2.5):
𝑢 = 𝑈𝑘,𝑁

1
𝑁𝜌 + 1 .

Then

√
𝑘

(︂
𝐹 −1

𝐺𝑢,𝜆

(︂
1 − 𝑈𝑘,𝑁

𝑁𝜌

𝑁𝜌 + 1

)︂
− 𝐹 −1

𝐺𝑢,𝜆 (1 − 𝑈𝑘,𝑁 )
)︂

=
√

𝑘

(︃
log 𝑈𝑘,𝑁 + log 𝑁𝜌+1

𝑁𝜌

𝜆
− log 𝑈𝑘,𝑁

𝜆

)︃

∼
√

𝑘 log
(︂

1 + 1
𝑁𝜌

)︂
∼

√
𝑘𝑁−𝜌.
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Let 𝑘 = 𝑁 𝛿, then the above expression decays if 𝜌 > 𝛿/2.
Let 𝐺𝑇 = 𝐺𝑇,𝛽. In this case

√
𝑘

1
𝑇 𝑝

𝐺−1
𝛽,𝑇

(︂
1 − 𝑈𝑘,𝑁

1
𝑁𝜌 + 1

)︂
∼ 𝑘1/2 (𝑁)𝜌/𝛽

𝑈
1/𝛽
𝑘,𝑁 𝑇 𝑝

=
(︂

𝑁

𝑘
𝑈𝑘,𝑁

)︂−1/𝛽 𝑘1/2−1/𝛽

𝑁−1/𝛽−𝜌/𝛽𝑇 𝑝
.

Since (𝑁/𝑘)𝑈𝑘,𝑁
𝑝−→ 1, for the above expression to decay it is sufficient that

𝑘1/2−1/𝛽

𝑁−1/𝛽−𝜌/𝛽𝑇 𝑝
→ 0.

With our choice of 𝑘 = 𝑁 𝛿 the condition resolves into

𝑁 𝛿/2−𝛿/𝛽

𝑁−1/𝛽−𝜌/𝛽𝑇 𝑝
= 𝑁 𝛿/2(1+1/𝛽)+(1−𝛿)(1/𝛽)+𝜈/𝛽

𝑇 𝑝
→ 0,

where 𝜈 is any fixed number > 0.
Let 𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 . Then

√
𝑘

1
𝑇 𝑝

𝐺−1
𝑛𝑜𝑟𝑚𝑎𝑙,𝑇

(︂
1 − 𝑈𝑘,𝑁

1
𝑁𝜌 + 1

)︂
∼ 𝑘1/2

√︀
log(𝑁)
𝑇 𝑝

.

If 𝑘 = 𝑁 𝛿, then the above decays if

𝑁 𝛿/2√︀log(𝑁)
𝑇 𝑝

→ 0.

Example 7, page 5 Finally, let 𝐹 = 𝐹𝑊,𝛼. We proceed as in the previous two examples.
First compute the normalizing functions of theorem 3.3.

𝐹 −1
𝑊,𝛼

(︂
1 − 𝑘

𝑁

)︂
= 𝑈𝑊,𝛼

(︂
𝑁

𝑘

)︂
= 𝜃𝐹 − 𝜃𝐹

(︂
𝑘

𝑁

)︂1/𝛼

,

𝑐𝑁 = 𝑁

𝑘

⎛⎝(︃ 1
1 − 𝐹𝑊,𝛼

)︃−1
⎞⎠′ (︂

𝑁

𝑘

)︂
= 𝑁

𝑘
𝑈 ′

𝐹𝑊,𝛼

(︂
𝑁

𝑘

)︂
= 𝑁

𝑘

𝜃𝐹

𝛼

(︂
𝑁

𝑘

)︂− 1
𝛼

−1
= 𝜃𝐹

𝛼

(︂
𝑘

𝑁

)︂1/𝛼

.

Pick �̃�𝑆,𝑁,𝑇 as in eq. (OA.2.5):

�̃�𝑆,𝑁,𝑇 = 𝑈𝑘,𝑁
1

𝑁𝜌 + 1
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Then

𝑁1/𝛼

𝜃𝐹
𝛼 𝑘1/𝛼−1/2

(︂
𝐹 −1

𝑊,𝛼

(︂
1 − 𝑈𝑘,𝑁

𝑁𝜌

𝑁𝜌 + 1

)︂
− 𝐹 −1

𝑊,𝛼 (1 − 𝑈𝑘,𝑁 )
)︂

∼ 𝑁1/𝛼

𝑘1/𝛼−1/2

[︃
(𝑈𝑘,𝑁 )1/𝛼 −

(︂
𝑁𝜌

𝑁𝜌 + 1

)︂1/𝛼

(𝑈𝑘,𝑁 )1/𝛼

]︃

=
√

𝑘

(︂
𝑁

𝑘
𝑈𝑘,𝑁

)︂−1/𝛼
[︃
1 −

(︂
𝑁𝜌

𝑁𝜌 + 1

)︂1/𝛼
]︃

.

As for the two previous cases, the above decays if 𝑘 is such that

√
𝑘

[︃
1 −

(︂
𝑁𝜌

𝑁𝜌 + 1

)︂1/𝛼
]︃

∼
√

𝑘𝑁−𝜌 → 0.

If 𝑘 = 𝑁 𝛿, then the above decays if 𝜌 > 𝛿/2.
Now turn to the 𝐺𝑇 terms. Let 𝐺𝑇 = 𝐺𝛽,𝑇 . Then

1
𝑇 𝑝

𝐺−1
𝛽,𝑇

(︂
1𝑈𝑘,𝑁

1
𝑁𝜌 + 1

)︂
∼ (𝑁)𝜌/𝛽

𝑈
1/𝛽
𝑘,𝑁 𝑇 𝑝

.

Multiplying by the scaling constants, we see that the 𝐺𝛽,𝑇 term to decay it is sufficient that

𝑁1/𝛼

𝑘1/𝛼−1/2
𝑁𝜌/𝛽

𝑈
1/𝛽
𝑘,𝑁 𝑇 𝑝

= 𝑁1/𝛼+1/𝛽+𝜌/𝛽

𝑘1/𝛼+1/𝛽−1/2𝑇 𝑝

(︂
𝑁

𝑘
𝑈𝑘,𝑁

)︂−1/𝛽

∼ 𝑁1/𝛼+1/𝛽+𝜌/𝛽

𝑘1/𝛼+1/𝛽−1/2𝑇 𝑝
→ 0 .

If 𝑘 = 𝑁 𝛿 and 𝜌 = 𝛿/2 + 𝜈, 𝜈 > 0, the above transforms into

𝑁 𝛿/2(1+1/𝛽)+(1−𝛿)(1/𝛼+1/𝛽)+𝜈/𝛽

𝑇 𝑝
→ 0.

If 𝐺𝑇 = 𝐺𝑛𝑜𝑟𝑚𝑎𝑙,𝑇 , then

𝑁1/𝛼

𝑘1/𝛼−1/2 𝐺−1
𝑛𝑜𝑟𝑚𝑎𝑙,𝑇

(︂
1 − 𝑈𝑘,𝑁

1
𝑁𝜌 + 1

)︂
∼ 𝑁1/𝛼

𝑘1/𝛼−1/2

√︀
log(𝑁)
𝑇 𝑝

.

If 𝑘 = 𝑁 𝛿, then the above expression decays if

𝑁 𝛿/2+(1−𝛿)(1/𝛼)√︀log(𝑁)
𝑇 𝑝

→ 0.

OA.3 Deterministic Conditions For Intermediate Order Tail Equiv-
alence Conditions

For completeness, we provide a deterministic sufficient condition for conditions (2) and (3) of
theorem 3.3.
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Proposition 1. Let 𝑈1, . . . , 𝑈𝑁 be iid Uniform[0, 1]. Let 𝛿𝑘,𝑁,𝑇 be such that as 𝑇, 𝑁(𝑇 ), 𝑘(𝑁) → ∞,
𝑘(𝑁) = 𝑜(𝑁) it holds that 𝛿𝑘,𝑁,𝑇 → 0 and

𝑃

(︂⃒⃒⃒⃒
𝑁

𝑘
𝑈𝑘,𝑁 − 1

⃒⃒⃒⃒
≥ 𝛿𝑘,𝑁,𝑇

)︂
→ 0. (OA.3.1)

Also let 𝑐𝑁 be a sequence of constants that is eventually positive (if 𝑐𝑁 < 0 for all 𝑁 , the proposition
holds with all signs of 𝛿𝑘,𝑁,𝑇 switched). Define

𝑠𝑠,𝑘,𝑁,𝑇 (𝑢, 𝛿) =
√

𝑘

𝑐𝑁

(︂
𝐹 −1

(︂
1 − 𝑘

𝑁
(1 + 𝛿) − 𝑢

)︂
− 𝐹 −1

(︂
1 − 𝑘

𝑁
(1 − 𝛿)

)︂
+ 1

𝑇 𝑝
𝐺−1

𝑇 (𝑢)
)︂

,

𝑆𝑠,𝑘,𝑁,𝑇 (𝑢, 𝛿) =
√

𝑘

𝑐𝑁

(︂
𝐹 −1

(︂
1 − 𝑘

𝑁
(1 − 𝛿) + 𝑢

)︂
− 𝐹 −1

(︂
1 − 𝑘

𝑁
(1 + 𝛿)

)︂
+ 1

𝑇 𝑝
𝐺−1

𝑇 (1 − 𝑢)
)︂

𝑝−→ 0.

for all 𝛿, 𝑢 such that the above functions are well-defined. If for some 𝜖 ∈ (0, 1)

sup
𝑢∈[0,𝜖]

𝑠𝑠,𝑘,𝑁,𝑇 (𝑢, 𝛿𝑘,𝑁,𝑇 ) → 0,

inf
𝑢∈[0, 𝑘

𝑁
(1−𝛿𝑘,𝑁,𝑇 )]

𝑆𝑠,𝑘,𝑁,𝑇 (𝑢, 𝛿𝑘,𝑁,𝑇 ) → 0,

then

sup
𝑢∈[0,𝜖]

√
𝑘

𝑐𝑁

(︂
𝐹 −1(1 − 𝑈𝑘,𝑁 − 𝑢) − 𝐹 −1 (1 − 𝑈𝑘,𝑁 ) + 1

𝑇 𝑝
𝐺−1

𝑇 (𝑢)
)︂

𝑝−→ 0,

inf
𝑢∈[0,𝑈𝑘,𝑁 ]

√
𝑘

𝑐𝑁

(︂
𝐹 −1 (1 − 𝑈𝑘,𝑁 + 𝑢) − 𝐹 −1 (1 − 𝑈𝑘,𝑁 ) + 1

𝑇 𝑝
𝐺−1

𝑇 (1 − 𝑢)
)︂

𝑝−→ 0.

A sequence 𝛿𝑘,𝑁,𝑇 of eq. (OA.3.1) always exists since 𝑁
𝑘 𝑈𝑘,𝑁

𝑝−→ 1; 𝛿𝑘,𝑁,𝑇 depends only on
𝑘, 𝑇, 𝑁 .

Proof of proposition 1. Define the event

𝐴𝑁 =
{︂⃒⃒⃒⃒

𝑁

𝑘
𝑈𝑘,𝑁 − 1

⃒⃒⃒⃒
≤ 𝛿𝑘,𝑁,𝑇

}︂
.

By assumption, 𝑃 (𝐴𝑁 ) → 1. On 𝐴𝑁 it holds that (𝑁/𝑘)𝑈𝑘,𝑁 ∈ (1 − 𝛿𝑘,𝑁,𝑇 , 1 + 𝛿𝑘,𝑁,𝑇 ).
Suppose that 𝑐𝑁 is eventually positive (if not, switch −𝛿𝑘,𝑁,𝑇 to +𝛿𝑘,𝑁,𝑇 and vice versa in the

main function). Then on 𝐴𝑁 it is also true that

inf
𝑢∈[0,𝑈𝑘,𝑁 ]

√
𝑘

𝑐𝑁

(︂
𝐹 −1 (1 − 𝑈𝑘,𝑁 + 𝑢) − 𝐹 −1 (1 − 𝑈𝑘,𝑁 ) + 1

𝑇 𝑝
𝐺−1

𝑇 (1 − 𝑢)
)︂

= inf
𝑢∈[0,𝑈𝑘,𝑁 ]

√
𝑘

𝑐𝑁

(︂
𝐹 −1

(︂
1 − 𝑘

𝑁

𝑁

𝑘
𝑈𝑘,𝑁 + 𝑢

)︂
− 𝐹 −1

(︂
1 − 𝑘

𝑁

𝑁

𝑘
𝑈𝑘,𝑁

)︂
+ 1

𝑇 𝑝
𝐺−1

𝑇 (1 − 𝑢)
)︂

≤ inf
𝑢∈[0, 𝑘

𝑁
(1−𝛿𝑘,𝑁,𝑇 )]

𝑆𝑠,𝑘,𝑁,𝑇 (𝑢, 𝛿𝑘,𝑁,𝑇 )

18



→ 0.

To obtain the above inequality, we decrease the choice set for the inf. In the first 𝐹 −1 we take
(1 − 𝛿𝑘,𝑁,𝑇 ), and in the second 𝐹 −1 we take (1 + 𝛿𝑘,𝑁,𝑇 ), this corresponds to largest possible value
of the resulting expression for each 𝑢. Last line follows by the assumption of the proposition.

We proceed in the exact same manner for the supremum: on 𝐴𝑁 it holds that

sup
𝑢∈[0,𝜖]

√
𝑘

𝑐𝑁

(︂
𝐹 −1(1 − 𝑈𝑘,𝑁 − 𝑢) − 𝐹 −1 (1 − 𝑈𝑘,𝑁 ) + 1

𝑇 𝑝
𝐺−1

𝑇 (𝑢)
)︂

= sup
𝑢∈[0,𝜖]

√
𝑘

𝑐𝑁

(︂
𝐹 −1

(︂
1 − 𝑘

𝑁

𝑁

𝑘
𝑈𝑘,𝑁 − 𝑢

)︂
− 𝐹 −1

(︂
1 − 𝑘

𝑁

𝑁

𝑘
𝑈𝑘,𝑁

)︂
+ 1

𝑇 𝑝
𝐺−1

𝑇 (𝑢)
)︂

≥ sup
𝑢∈[0,𝜖]

𝑠𝑠,𝑘,𝑁,𝑇 (𝑢, 𝛿𝑘,𝑁,𝑇 )

→ 0.

To obtain the inequality, we decrease the choice set for the supremum and choose the smallest values
in the quantiles.

Finally, observe that the Makarov inequalities of lemma A.3 also show that for the original
random supremum and infimum with probability approaching 1

sup
𝑢∈[0,𝜖]

{. . .} ≤ sup
𝑢∈[0,1−𝑈𝑘,𝑁 ]

{. . .} ≤ inf
𝑢∈[0,𝑈𝑘,𝑁 ]

{. . .}.

This implies that on event 𝐴𝑁 both the random supremum and the random infimum converge to
zero. Since 𝑃 (𝐴𝑁 ) → 1, this establishes convergence i.p.

OA.4 Additional Simulation Results

In this section we provide additional results related to the simulation study of section 5 of the main
text. First, in section OA.4.1 we report the results of an expanded version of the simulation study
in the main text, covering more confidence intervals and additional distributions for 𝜃𝑖 and 𝑢𝑖𝑡.
Second, in section OA.4.2 we consider the performance of different estimators for quantiles proposed
in section 4.

OA.4.1 Additional Simulations for Confidence Intervals

In this section we report the results of an expanded simulation study for performance of confidence
intervals. The setup as in in section 5 of the main text. We report results for two distributions of
𝑢𝑖𝑡: 𝑢𝑖𝑡 ∼ 𝐺𝛽 where 𝐺𝛽 = 𝐺𝛽,𝑇 with 𝜇𝑇 = 0, 𝛽 = 3, and 𝑢𝑖𝑡 ∼ 𝑁(0, 1) (see section OA.2.1). We
consider three distributions for parameter of interest 𝜃𝑖, corresponding to the three distributions
considered in examples 1-3 above. As in the main text, we consider two cross-sectional sample sizes:
𝑁 = 200 and 𝑁 = 2000. For the heavy-tailed distribution 𝐹𝐹 𝑟,𝜅 for 𝜃 we provide results for 𝑇 = 10,
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in line with the main text and the empirical application. For the light-tailed distribution 𝐹𝐺𝑢,𝜆 and
the finite-tailed distribution 𝐹𝑊,𝛼 we provide results for 𝑇 = 15.

In addition to the confidence intervals considered in the main text, we also consider several
additional intervals based on the feasible EVT (theorem 4.3) in the main text. the required critical
values can be obtained by simulating from the limit distribution of theorem 4.3 after plugging in
a consistent estimator for 𝛾. We use the estimators of remark 9. For 𝐹𝐹 𝑟,𝜅 both the Hill and the
PWM estimator are consistent. For 𝐹𝐺𝑢,𝜆 and 𝐹𝑊,𝛼 we only consider the PWM estimator.

The full results are plotted on figures 1-18. The results broadly match those presented in the
main text, and we refer to the main text for a full discussion. For inference on extreme quantiles, we
recommend using the mixed CI based on an extreme approximation, using subsampled critical values
if the sign of 𝛾 is not known. For all distributions, it combines good coverage with favorable length
properties. While the max-only CI with subsampled critical values has slightly better coverage
properties, that comes at the price of a significantly longer interval. Using simulated critical values
based on the PWM estimator is viable for 𝑁 = 2000 if the distribution has an infinite right tail
(𝛾 ≥ 0). In this case the corresponding CIs have good coverage properties and are somewhat shorter
that the intervals with subsampling-based critical values. If instead 𝛾 < 0, CIs with simulated
critical values should not be used; these intervals are uniformly dominated in terms of coverage by
those based on subsampling. As in the main text, intermediate order approximations are a viable
option in the regions where the corresponding rate conditions hold and the statistic is stable. We
recommend subsampling to obtain the required critical values.
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Figure 1: Coverages for different approximations, 𝑁 = 200, 2000, 𝑇 = 10. 𝜃 ∼ 𝐹𝐹 𝑟,𝜅, 𝜅 = 4,
𝑢𝑖𝑡 ∼ 𝐺𝛽, 𝛽 = 8
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Figure 3: Coverages for different approximations, 𝑁 = 200, 2000, 𝑇 = 10. 𝜃 ∼ 𝐹𝐹 𝑟,𝜅, 𝜅 = 4,
𝑢𝑖𝑡 ∼ 𝑁(0, 1)
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𝑢𝑖𝑡 ∼ 𝑁(0, 1)
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Figure 10: Confidence interval length for different approximations, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝐺𝑢,𝜆,
𝜆 = 1, 𝑢𝑖𝑡 ∼ 𝑁(0, 1)
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Figure 11: Coverages for different approximations, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝐺𝑢,𝜆, 𝜆 = 1,
noiseless data
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Figure 12: Confidence interval length for different approximations, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝐺𝑢,𝜆,
𝜆 = 1, noiseless data
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Figure 13: Coverages for different approximations, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝑊,𝛼, 𝛼 = 4,
𝑢𝑖𝑡 ∼ 𝐺𝛽, 𝛽 = 8
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Figure 14: Confidence interval length for different approximations, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝑊,𝛼,
𝛼 = 4, 𝑢𝑖𝑡 ∼ 𝐺𝛽, 𝛽 = 8
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Figure 15: Coverages for different approximations, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝑊,𝛼, 𝛼 = 4,
𝑢𝑖𝑡 ∼ 𝑁(0, 1)
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Figure 16: Confidence interval length for different approximations, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝑊,𝛼,
𝛼 = 4, 𝑢𝑖𝑡 ∼ 𝑁(0, 1)
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Figure 17: Coverages for different approximations, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝑊,𝛼, 𝛼 = 4,
noiseless data
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Figure 18: Confidence interval length for different approximations, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝑊,𝛼,
𝛼 = 4, noiseless data
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OA.4.2 Corrected Estimators For Quantiles

In this section we assess the performance of adjusted estimators for quantiles proposed in example 4
and in section 4.3 of the main text. Performance is compared in terms of mean absolute error. We
work in the setup of section 5 in the main text and section OA.4.

We now describe the estimators compared. Suppose interest lies in 𝐹 −1(𝑞). To form median-
unbiased estimators based on extreme approximations, let 𝑙 solve 1 − 𝑙/𝑁 = 𝑞, and set 𝑟 = ⌊𝑙⌋.
“Mixed” estimators are based on adjusting the sample quantile. Let 𝑐𝛼 be a consistent estimator of
the 𝛼th quantile of [(𝐸*

1 + · · · + 𝐸𝑟+1)−𝛾 − 𝑙−𝛾 ] /[
(︁
𝐸*

1 + · · · + 𝐸*
𝑞+1

)︁−𝛾
− (𝐸*

1)−𝛾 ].

ℳ𝑚𝑖𝑥𝑒𝑑
𝑁,𝑇 = 𝜗𝑁−𝑟,𝑁,𝑇 − 𝑐1/2 (𝜗𝑁−𝑞,𝑁,𝑇 − 𝜗𝑁,𝑁,𝑇 ) (OA.4.1)

“Max only” estimators instead adjust the sample maximum using the corresponding limit distribution.
Let 𝑐𝛼 be an estimator of the 𝛼th quantile of [(𝐸*

1)−𝛾 − 𝑙−𝛾 ] /[
(︁
𝐸*

1 + · · · + 𝐸*
𝑞+1

)︁−𝛾
− (𝐸*

1)−𝛾 ]. The
estimator is then defined as

ℳ𝑀𝑎𝑥 𝑜𝑛𝑙𝑦
𝑁,𝑇 = 𝜗𝑁,𝑁,𝑇 − 𝑐1/2 (𝜗𝑁−𝑞,𝑁,𝑇 − 𝜗𝑁,𝑁,𝑇 )

𝑐𝛼 and 𝑐𝛼 are consistently estimated by subsampling and by simulation, as described in section 4.1.
We also consider the extrapolation estimator of theorem 4.3.1 of de Haan and Ferreira (2006) and
the adjusted estimator of Jochmans and Weidner (2022) 𝜗⌊𝑁𝜏*⌋,𝑁,𝑇 , which is based on the central
order approximations of section 4.3.

We plot the results graphically on figs. 19-27 . In all cases we report the mean absolute error
(MAE) relative to the unadjusted sample quantile. Values greater than 1 mean that the estimator
performs worse than the sample quantiles, values below 1 signify better performance. On the top
panel of each figure we plot relative MAE on a scale from 0.5 to 2; on the bottom panel we plot
the relative MAE on a scale 0.5 to 15 in order to capture the magnitude of breakdown of several
estimators.

There are two estimators that offer improvements over the unadjusted sample quantile – estimator
(OA.4.1) with quantiles 𝑐𝛼 estimated by subsampling and the extrapolation estimator. The first
estimator is more robust, while the second one can potentially yield larger improvements. Estimator
(OA.4.1) has relative MAE <1 for a slight majority of quantiles considered and does not suffer
from significant breakdowns. The extrapolation estimator offers stronger improvements for higher
quantiles than estimator (OA.4.1) for distributions with 𝛾 ≥ 0. However, it appears to perform less
favorably in the case of 𝛾 < 0 (𝐹𝑊,𝛼). We recommend against all other correction methods and
against using quantiles estimated by simulation.
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Figure 19: Mean absolute error of corrected estimators for quantiles, different approximations, MAE
relative to unadjusted sample quantile, 𝑁 = 200, 2000, 𝑇 = 10. 𝜃 ∼ 𝐹𝐹 𝑟,𝜅, 𝜅 = 4, 𝑢𝑖𝑡 ∼ 𝐺𝛽, 𝛽 = 8.
Top panel: scale from 0.5 to 2. Bottom panel: scale from 0.5 to 15.
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Figure 20: Mean absolute error of corrected estimators for quantiles, different approximations, MAE
relative to unadjusted sample quantile, 𝑁 = 200, 2000, 𝑇 = 10. 𝜃 ∼ 𝐹𝐹 𝑟,𝜅, 𝜅 = 4, 𝑢𝑖𝑡 ∼ 𝑁(0, 1). Top
panel: scale from 0.5 to 2. Bottom panel: scale from 0.5 to 15.
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Figure 21: Mean absolute error of corrected estimators for quantiles, different approximations, MAE
relative to unadjusted sample quantile, 𝑁 = 200, 2000, 𝑇 = 10. 𝜃 ∼ 𝐹𝐹 𝑟,𝜅, 𝜅 = 4, noiseless data.
Top panel: scale from 0.5 to 2. Bottom panel: scale from 0.5 to 15.
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Figure 22: Mean absolute error of corrected estimators for quantiles, different approximations, MAE
relative to unadjusted sample quantile, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝐺𝑢,𝜆, 𝜆 = 1, 𝑢𝑖𝑡 ∼ 𝐺𝛽, 𝛽 = 8.
Top panel: scale from 0.5 to 2. Bottom panel: scale from 0.5 to 15.

43



0.9 0.945 0.9905 0.9955 0.999

Quantile

0.5

1

1.5

2

R
e

la
ti
v
e

 M
A

E

MAE of corrected estimators, relative to raw sample quantile

N=200,T=15, F=F
Gu, 

, =1, u
it
~N(0, 2), 2=1

0.9 0.945 0.9905 0.9955 0.999

Quantile

10
0R

e
la

ti
v
e

 M
A

E

0.9 0.945 0.9905 0.9955 0.999

Quantile

0.5

1

1.5

2

R
e

la
ti
v
e

 M
A

E

MAE of corrected estimators, relative to raw sample quantile

N=2000,T=15, F=F
Gu, 

, =1, u
it
~N(0, 2), 2=1

0.9 0.945 0.9905 0.9955 0.999

Quantile

10
0

10
2

R
e

la
ti
v
e

 M
A

E

Extreme: mixed, subsampling (1a)

Extreme: max, subsampling (1b)

Extreme: mixed, PWM (1c)

Intermediate: extrapolation (2c)

Central: analytical correction (3b)

Figure 23: Mean absolute error of corrected estimators for quantiles, different approximations, MAE
relative to unadjusted sample quantile, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝐺𝑢,𝜆, 𝜆 = 1, 𝑢𝑖𝑡 ∼ 𝑁(0, 1).
Top panel: scale from 0.5 to 2. Bottom panel: scale from 0.5 to 15.
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Figure 24: Mean absolute error of corrected estimators for quantiles, different approximations, MAE
relative to unadjusted sample quantile, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝐺𝑢,𝜆, 𝜆 = 1, noiseless data.
Top panel: scale from 0.5 to 2. Bottom panel: scale from 0.5 to 15.
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Figure 25: Mean absolute error of corrected estimators for quantiles, different approximations, MAE
relative to unadjusted sample quantile, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝑊,𝛼, 𝛼 = 4, 𝑢𝑖𝑡 ∼ 𝐺𝛽, 𝛽 = 8.
Top panel: scale from 0.5 to 2. Bottom panel: scale from 0.5 to 15.
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Figure 26: Mean absolute error of corrected estimators for quantiles, different approximations, MAE
relative to unadjusted sample quantile, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝑊,𝛼, 𝛼 = 4, 𝑢𝑖𝑡 ∼ 𝑁(0, 1). Top
panel: scale from 0.5 to 2. Bottom panel: scale from 0.5 to 15.

47



0.9 0.945 0.9905 0.9955 1

Quantile

0.5

1

1.5

2

R
e
la

ti
v
e
 M

A
E

MAE of corrected estimators, relative to raw sample quantile

N=200,T=15, F=F
W, 

, =4, noiseless data

0.9 0.945 0.9905 0.9955 1

Quantile

10
0

R
e
la

ti
v
e
 M

A
E

0.9 0.945 0.9905 0.9955 1

Quantile

0.5

1

1.5

2

R
e
la

ti
v
e
 M

A
E

MAE of corrected estimators, relative to raw sample quantile

N=2000,T=15, F=F
W, 

, =4, noiseless data

0.9 0.945 0.9905 0.9955 1

Quantile

10
0

10
2

R
e
la

ti
v
e
 M

A
E

Extreme: mixed, subsampling (1a)

Extreme: max, subsampling (1b)

Extreme: mixed, PWM (1c)

Intermediate: extrapolation (2c)

Central: analytical correction (3b)

Figure 27: Mean absolute error of corrected estimators for quantiles, different approximations, MAE
relative to unadjusted sample quantile, 𝑁 = 200, 2000, 𝑇 = 15. 𝜃 ∼ 𝐹𝑊,𝛼, 𝛼 = 4, noiseless data.
Top panel: scale from 0.5 to 2. Bottom panel: scale from 0.5 to 15.
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OA.5 Supplemental Materials for the Empirical Application

This section provides additional results related to our empirical application to differences in firm
productivity between denser and less dense areas in the setting of Combes et al. (2012) (CDGPR12).
In section OA.5.1 we discuss in detail the issue of estimating the EV index 𝛾, including choosing the
corresponding tuning parameter 𝑘 and the difference between several estimators of 𝛾. In sections
OA.5.2 and OA.5.3 we provide additional results related to the analysis in section 6. We construct
and compare confidence intervals using all the methods discussed in sections 4 and 5. We find that
the results presented in the main text are robust to the choice of the CI used. Further, we consider
the results based on a full dataset of CDGPR12 rather than a subsample of 2000 firms.

OA.5.1 Estimation of the EV Index

We begin by providing further details about estimation of the EV index 𝛾. We consider several
different estimators for 𝛾 and discuss the impact of the choice of 𝑘 used to form the estimators.

We consider the following estimators for 𝛾:
(1) The Hill (1975) estimator, as defined in remark 9 in the main text. It is consistent if 𝛾 ≥ 0; if

𝛾 < 0, the Hill estimator converges in probability to 0.
(2) The probability weighted moment estimator (PWM) of Hosking and Wallis (1987), as defined

in remark 9 of the main text. It is consistent for 𝛾 < 1.
(3) The average of the previous two estimators provide a compromise option. It is consistent if

𝛾 ∈ [0, 1), otherwise it is asymptotically biased upwards.
Figs. 28 and 29 graphically present our estimates using the above estimators for a range of values

of 𝑘. In fig. 28 we plot the estimates for the left and right tails of the distribution of productivity in
areas with below-median employment density (ABMED). Fig. 29 shows the estimates for areas with
above-median employment density (AAMED). In both cases 𝑘 is allowed to range from 0 to 0.075𝑁

(we assume that up to 7.5% of the relevant sample tail displays approximate Pareto behavior).
The EV index estimators are positive and fairly large for both the left and the right tails of

both the AAMED and the ABMED distributions for a wide range of values of 𝑘. In all cases, the
estimated values of 𝛾 indicate fairly heavy left and right tails. However, there some differences
between the values of the estimators. Generally, the Hill estimator produces the highest estimates
(generally ≈ 0.38 for all tails except the right tail of AAMED, where the value is ≈ 0.32). The PWM
estimator generally yields lower estimates (generally ≈ 0.25 except for the right tail of AAMED
which has 𝛾𝑃 𝑊 𝑀 ≈ 0.2).

All estimators are fairly insensitive to choice of 𝑘, as figs. 28 and 29 show. The only exception
occurs for 𝑘 small (≤ 50), where the estimators change rapidly with 𝑘, before broadly stabilizing
for larger values of 𝑘. Our choice of 𝑘 = ⌊𝑁3/5⌋ lies in the stable region for both AAMED and
ABMED.

The point estimates obtained in the main text are obtained by considering the average of the
Hill and the PWM estimators for 𝑘 = ⌊𝑁3/5⌋, which corresponds to 𝑘 = 95 for both AAMED and
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Figure 28: Estimates of EV index 𝛾 for a range of values of 𝑘. Areas with below-median employment
density. Top panel: left tail. Bottom panel: right tail
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Figure 29: Estimates of EV index 𝛾 for a range of values of 𝑘. Areas with below-median employment
density
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ABMED. The estimated EV indices of the ABMED distribution is 0.36 for the left tail and 0.32 for
the right tail. The estimates for the AAMED distribution are 0.35 for the left tail and 0.30 for the
right tail.

OA.5.2 Equivalence of Tails up to Mean and Variance

We now present additional results for the question of whether mean and variance are sufficient to
capture the difference between the AAMED and the ABMED distributions. As in the main text,
we first standardize the data so that both datasets have the same mean and variance. We construct
95% confidence intervals for a range of extreme quantiles of standardized data using the confidence
intervals considered in sections 4-5 and OA.4.1. The tuning parameters are chosen as in the main
text and section 5. We remark that the analytical correction of Jochmans and Weidner (2022)
cannot be constructed, as we do not have access to the original data, nor to the estimates of the
variance of each 𝜗𝑖,𝑇 . The quantiles considered are 0.001-0.1 for the left tail and 0.9-0.999 for the
right tail.

Almost all methods yield virtually identical confidence intervals on the full dataset, as figs. 30-31
show. The two exceptions are the extrapolation interval and the interval based on theorem 4.5
with subsampled critical values, which are considerably wider for quantiles beyond 0.02 and 0.995.
However, these intervals appear to have the same centering as the other CIs throughout. These
results are in line with the simulation evidence presented in section OA.4.1. Based on this similarity
of intervals, in the main text we report the CI based on theorem 4.3 with subsampled critical values
(line “Extreme: mixed, subsampling” on figs. 30-31).

We also repeat our analysis with the full dataset of CDGPR12. Recall that we assume that the
estimation noise in 𝜗𝑖,𝑇 is assumed to have at least 8 moments. Then the finding of heavy tails of
𝐹𝐴𝑀 and 𝐹𝐵𝑀 implies that inference should be reliable, as in this case proposition 3.2 shows that
there are no restrictions on the relative sizes of 𝑁 and 𝑇 .

The confidence intervals based on the full dataset are reported on figs. 32-33. As above, the
different CIs yield broadly the same results for both tails of the distributions for AAMED and
ABMED. The results follow the pattern presented in section 5. However, for quantiles below 0.025
and above 0.99 the intervals also display near-zero length, owing to the large cross-sectional size.
As in the simulations, the extrapolation-based interval and the interval based on theorem 4.5 with
subsampled critical values are considerably wider. Fig. 34 is the counterpart of fig. 3 in the main
text using the full sample. For the left tail, the CIs overlap almost completely. The situation
is somewhat more delicate for the right tail. The 0.9-0.97th quantiles are statistically different.
However, the difference between the two distributions appears minor, and the tails appear to have
the same shape. Overall, this finding supports the key assumption CDGPR12 make in their second
estimation stage.
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Figure 30: 95% confidence intervals for extreme quantiles, ABMED data, random subsample with
𝑁 = 2000, standardized to have the same mean and variance as AAMED. CIs as in section 5 and
OA.4
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Figure 31: 95% confidence intervals for extreme quantiles, AAMED data, random subsample with
𝑁 = 2000, standardized to have the same mean and variance as ABMED. CIs as in section 5 and
OA.4
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Figure 32: 95% confidence intervals for extreme quantiles, ABMED data, full sample standardized
to have the same mean and variance as AAMED. CIs as in section 5 and OA.4
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Figure 33: 95% confidence intervals for extreme quantiles, AAMED data, full sample standardized
to have the same mean and variance as ABMED. CIs as in section 5 and OA.4
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Figure 34: 95% confidence intervals for extreme quantiles (between corresponding lines), AAMED
and ABMED data, full sample standardized to have the same mean and variance. CIs based on
theorem 4.3 with critical values estimated by subsampling

OA.5.3 Confidence Intervals for Extreme Quantiles of Productivity

We provide analysis analogous to the previous section for both tails of the productivity distribution
in AAMED and ABMED. As in the main text, the data is not adjusted. For the left tail we consider
the 0.001-0.1th quantiles; for the right tail the 0.9-0.999th quantiles. The complete results are
presented on figs. 35-37 for the subsample used in the main text and on figs. 38-40 for the full
sample. We omit the comparison of different CIs, as the results are identical to those of section
OA.5.2.

There is a significant difference between the low quantiles of 𝐹𝐴𝑀 and 𝐹𝐵𝑀 when using the
full dataset. As fig. 40 shows, the 0.001-0.07th quantiles in ABMED are significantly higher than
those in AAMED. Informally, this can be phrased as the least productive firms in less dense areas
being more productive than the least productive firms in denser areas. Mathematically, such a
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Figure 35: 95% confidence intervals for extreme quantiles, ABMED data, random subsample with
𝑁 = 2000. CIs as in section 5 and OA.4

finding is natural. 𝐹𝐴𝑀 and 𝐹𝐵𝑀 have the same tails up to mean and variance. However, 𝐹𝐴𝑀

has higher variance and thus a heavier tail. As 𝐹𝐵𝑀 has a lower mean, eventually the tails of 𝐹𝐵𝑀

and 𝐹𝐴𝑀 cross. This crossover happens between the 0.07th and the 0.1th quantiles (see fig. 40).
Economically, this result seems to go against the hypothesis of stronger competition in dense areas.
However, we conjecture that the effect is due to difference in sectoral composition between AAMED
and ABMED, rather than a failure of the hypothesis. As the publicly available data from Combes
et al. (2012) does not include sectoral labeling, we leave a detailed investigation of the point to
future research.
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Figure 36: 95% confidence intervals for extreme quantiles, AAMED data, random subsample with
𝑁 = 2000. CIs as in section 5 and OA.4
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Figure 37: 95% confidence intervals for extreme quantiles, AAMED and ABMED data, random
subsample with 𝑁 = 2000. CIs based on theorem 4.3 with critical values estimated by subsampling
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Figure 38: 95% confidence intervals for extreme quantiles, ABMED data, full sample. CIs as in
section 5 and OA.4
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Figure 39: 95% confidence intervals for extreme quantiles, AAMED data, full sample. CIs as in
section 5 and OA.4
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Figure 40: 95% confidence intervals for extreme quantiles of AAMED and ABMED distributions.
CIs based on theorem 4.3 with critical values estimated by subsampling
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