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This supplementary appendix provides additional theoretical, numerical, and empirical

results. In section OA.1, we show that the unit averaging distribution is asymptotically

normal if the weights do not depend on data, complementing the distributional results

for data-dependent weights (theorems 2-3 in the main text). In section OA.2, we discuss

optimal estimation under risks that are not the mean squared error. In section OA.3, we

propose a practical confidence interval based on the minimal MSE estimator. Section OA.4

is devoted to further simulation results. We consider additional sample sizes and focus

parameters. We also analyze the weights of the minimal MSE estimator, and consider the

finite sample properties of ours confidence intervals for the focus parameter. Similarly, in

section OA.5 we provide further estimation results and analyze averaging weights for the

empirical application of section 5. Finally, in section OA.6 we provide an application to

GDP nowcasting for a panel of European countries. As in the application of section 5, the

minimum MSE estimator improves nowcasting performance relative both to the individual

estimator and to competing averaging schemes. The improvement is stronger for shorter

panels.
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OA.1 Asymptotic Distribution For Data-Independent

Weights

OA.1.1 Theorem Statement

Theorems 2-3 in the main text characterize the distribution of the unit averaging estimator

which uses the optimal weights (4) and (6). Theorems 2-3 establish that the unit averaging

estimator with these data-dependent weights is approximately distributed as a randomly

weight sum of Gaussian variables.

In contrast, if the weights do not depend on the data, the unit averaging estimator is

approximately normally distributed. The mean and variance are given by the weighted

sums of biases and variances, respectively. To formalize the result, let {𝑤1,𝑤2, . . . ,} and 𝑤

be as defined before theorem 1 in the main text. The following theorem formally states the

normality result.

Theorem OA.1.1. Assume that assumptions A.1–A.5 are satisfied. Let {𝑤𝑁} be such

that (𝑖) for each 𝑁 , 𝑤𝑁 is measurable w.r.t. 𝜎(𝜂1, . . . ,𝜂𝑁), (𝑖𝑖) for each 𝑁 , 𝑤𝑖𝑁 ≥ 0 for

all 𝑖,
∑︀𝑁

𝑖=1 𝑤𝑖𝑁 = 1, 𝑤𝑗 𝑁 = 0 for 𝑗 > 𝑁 , (𝑖𝑖𝑖) for some �̄� ≥ 0 it holds that sup𝑖>�̄� 𝑤𝑖𝑁 =

𝑜(𝑁−1/2), and (𝑖𝑣) {𝑤𝑖𝑁}�̄�𝑖=1 → {𝑤𝑖}�̄�𝑖=1.

Then as 𝑁, 𝑇 → ∞ jointly it holds that

√
𝑇 (�̂�(𝑤𝑁)− 𝜇(𝜃1)) ⇒ 𝑁

(︃
�̄�∑︁
𝑖=1

𝑤𝑖𝑑
′
0𝜂𝑖 − 𝑑′

0𝜂1,
�̄�∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0

)︃
.

Note that condition (𝑖𝑖𝑖) imposes a stronger uniform convergence requirement on the

weights than theorem 1. However, this requirement is still compatible the weights assigned

to the restricted sets in the large-𝑁 approach.

We apply theorem OA.1.1 in two ways. First, in section OA.2, we establish a local

approximation to an alternative notion of risk for the unit averaging estimator — the mean

average deviation E[|�̂�(𝑤𝑁)− 𝜇(𝜃1)|]. Second, in section OA.3, we use theorem OA.1.1 as
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a building block to construct valid confidence intervals for the focus parameter based on

the minimum MSE estimator.

OA.1.2 Proof of Theorem OA.1.1

Before presenting the proof of theorem OA.1.1, we introduce a number of intermediate

results.

We first give a straightforward modification of theorem 1 in Phillips and Moon (1999),

which allows us to replace sequential convergence (first taking limits as 𝑇 → ∞, then as

𝑁 → ∞) by joint convergence (𝑁, 𝑇 → ∞ jointly).

Lemma OA.1.2. Let 𝑌𝑖 𝑇 be random variables indexed by 𝑖 = 1, . . . , 𝑁 and 𝑇 = 1,2, . . . ,.

Suppose 𝑌𝑖 𝑇 are independent over 𝑖 and that

(i) 𝑌𝑖 𝑇 ⇒ Λ𝑖 as 𝑇 → ∞,

(ii)
∑︀𝑁

𝑖=1𝑤𝑖𝑁Λ𝑖 ⇒ 𝑋 as 𝑁 → ∞,

(iii) lim sup𝑁,𝑇→∞
∑︀𝑁

𝑖=1 𝑤𝑖𝑁 |E(𝑌𝑖 𝑇 )− E(Λ𝑖)| = 0,

(iv) lim sup𝑁,𝑇→∞
∑︀𝑁

𝑖=1 E|𝑤𝑖𝑁𝑌𝑖 𝑇 | < ∞,

(v) lim sup𝑁→∞
∑︀𝑁

𝑖=1 E
[︀
𝑤𝑖𝑁 |Λ𝑖|I|𝑤𝑖 𝑁Λ𝑖|>𝜀

]︀
= 0 for any 𝜀 > 0, and

(vi) lim sup𝑁,𝑇→∞
∑︀𝑁

𝑖=1 E
[︀
𝑤𝑖𝑁 |𝑌𝑖 𝑇 |I|𝑤𝑖 𝑁𝑌𝑖 𝑇 |>𝜀

]︀
= 0 for any 𝜀 > 0 .

Then as 𝑁, 𝑇 → ∞
𝑁∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 ⇒ 𝑋.

In particular, if as 𝑁 → ∞ it holds that
∑︀𝑁

𝑖=1𝑤𝑖𝑁Λ𝑖
𝑝−→ 𝐴 for 𝐴 non-random, then as

𝑁, 𝑇 → ∞ it holds that
∑︀𝑁

𝑖=1 𝑤𝑖𝑁𝑌𝑖 𝑇
𝑝−→ 𝐴.

Proof. The proof is close to that of theorem 1 in Phillips and Moon (1999). The key

modification consists in replacing 𝑛−1𝜁𝑘,𝑛,𝑇 (in their notation) by

𝑊𝑘𝑁 𝑇 =
∑︁
1≤𝑖<𝑘

𝑤𝑖𝑁𝑌𝑖 𝑇 +
∑︁

𝑘<𝑖≤𝑁

𝑤𝑖𝑁Λ𝑖

and every factor 1/𝑛 by the appropriate weight 𝑤𝑖𝑁 . As in their theorem 1, this establishes
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condition (3.9) of Phillips and Moon (1999): for all bounded continuous 𝑓

lim sup
𝑁,𝑇→∞

⃒⃒⃒⃒
⃒E
(︃
𝑓

(︃
𝑁∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇

)︃)︃
− E

(︃
𝑓

(︃
𝑁∑︁
𝑖=1

𝑤𝑖Λ𝑖

)︃)︃⃒⃒⃒⃒
⃒ = 0

By lemma 6 in Phillips and Moon (1999), this implies the result of the theorem.

To apply lemma OA.1.2, for the remainder of the section define

𝑌𝑖 𝑇 =
√
𝑇 (𝜇(𝜃𝑖)− 𝜇(𝜃1)), (OA.1)

and note that 𝑌𝑖 𝑇 ⇒ Λ𝑖 as 𝑇 → ∞, where Λ𝑖 ∼ 𝑁 (𝑑′
0(𝜂𝑖 − 𝜂1),𝑑

′
0𝑉𝑖𝑑0) is the random

variable that appears on the right hand side in lemma 1. As before, let 𝑑1 = ∇𝜇(𝜃1),

𝑑0 = ∇𝜇(𝜃0).

Lemma OA.1.3. Let 𝑌𝑖 𝑇 be defined as in eq. (OA.1). Under assumptions of theorem

OA.1.1
�̄�∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 ⇒
�̄�∑︁
𝑖=1

𝑤𝑖Λ𝑖 as 𝑁, 𝑇 → ∞.

Proof. Note that randomness enters only the 𝑇 dimension here. As {𝑌𝑖 𝑇}�̄�𝑖=1 ⇒ {Λ𝑖}�̄�𝑖=1

as 𝑁, 𝑇 → ∞ (𝑁 does not matter), and as 𝑁, 𝑇 → ∞ {𝑤𝑖𝑁}�̄�𝑖=1 → {𝑤𝑖}�̄�𝑖=1 as 𝑁, 𝑇 → ∞.

Slutsky’s theorem gives the result.

Recall that under assumption (ii) of theorem OA.1.1 it holds that

sup
𝑖>�̄�

𝑤𝑖𝑁 = 𝑜(𝑁− 1
2 ) .

Lemmas OA.1.4-OA.1.8 verify conditions (𝑖𝑖)-(𝑣𝑖) of lemma OA.1.2 for
∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁𝑌𝑖 𝑇 ,

𝑁 > �̄� .

Lemma OA.1.4. Let 𝑌𝑖 𝑇 be defined as in eq. (OA.1). Under assumptions of theorem
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OA.1.1

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁Λ𝑖
𝑝−→ −

(︃
1−

�̄�∑︁
𝑖=1

𝑤𝑖

)︃
𝑑′
0𝜂1 as 𝑁 → ∞ .

Proof. By the triangle inequality

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁Λ𝑖 −

(︃
1−

�̄�∑︁
𝑖=1

𝑤𝑖

)︃
(−𝑑′

0𝜂1)

⃒⃒⃒⃒
⃒⃒

≤

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁Λ𝑖 −
𝑁∑︁

𝑖=�̄�+1

𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)

⃒⃒⃒⃒
⃒⃒

+

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)−

(︃
1−

�̄�∑︁
𝑖=1

𝑤𝑖

)︃
(−𝑑′

0𝜂1)

⃒⃒⃒⃒
⃒⃒ . (OA.2)

We show that both terms on the right hand side converge to zero in probability. First

we show that
⃒⃒⃒∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁Λ𝑖 −
∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)

⃒⃒⃒
𝑝−→ 0. Consider the variance of∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁Λ𝑖:

Var

⎛⎝ 𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁Λ𝑖

⎞⎠ =
𝑁∑︁

𝑖=�̄�+1

𝑤2
𝑖𝑁𝑑

′
0𝑉𝑖𝑑0

≤

[︃
sup
𝑗>�̄�

𝑤𝑗 𝑁

]︃
𝑁∑︁

𝑖=�̄�+1

𝑤𝑖𝑁𝑑
′
0𝑉𝑖𝑑0

≤ �̄�Σ𝜆
2
𝐻 ‖𝑑0‖2

[︃
sup
𝑗>�̄�

𝑤𝑗 𝑁

]︃
,

where we used independence of Λ𝑖, the expressions for variance of Λ𝑖 given in lemma 1, and the

bound on variance 𝑉𝑖 = 𝐻−1
𝑖 Σ𝑖𝐻

−1
𝑖 implied by assumption A.3 on the bounds of eigenvalues

of component variance matrices. Since E
(︁∑︀𝑁

𝑖=�̄�+1 𝑤𝑖𝑁Λ𝑖

)︁
=
∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1), by

Chebyshev’s inequality and the above bound for variance, for any 𝜀 > 0 it holds that

𝑃

⎛⎝⃒⃒⃒⃒⃒⃒ 𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁Λ𝑖 −
𝑁∑︁

𝑖=�̄�+1

𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)

⃒⃒⃒⃒
⃒⃒ > 𝜀

⎞⎠ (OA.3)

≤
�̄�Σ𝜆

2
𝐻 ‖𝑑0‖2

[︀
sup𝑗>�̄� 𝑤𝑗 𝑁

]︀
𝜀

= 𝑜(1),
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by assumption (iii) of theorem OA.1.1. Next we show that

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)−

(︃
1−

�̄�∑︁
𝑖=1

𝑤𝑖

)︃
(−𝑑′

0𝜂1)

⃒⃒⃒⃒
⃒⃒→ 0

by considering two cases depending on whether
∑︀�̄�

𝑖=1𝑤𝑖 is equal to 1 or not.

Case I : suppose that
∑︀�̄�

𝑖=1 𝑤𝑖 ̸= 1. In this case there exist 𝑁0, 𝜀𝑤 > 0 such that for

all 𝑁 > 𝑁0 it holds that
∑︀�̄�

𝑖=1 𝑤𝑖𝑁 ≤ 1 − 𝜀𝑤. Note that 𝑁0 is necessarily larger than

�̄� . Define �̃�𝑖𝑁 = 𝑤𝑖𝑁/
(︁
1−

∑︀�̄�
𝑖=1 𝑤𝑖𝑁

)︁
. For 𝑁 > 𝑁0, (�̃��̄�+1𝑁 , �̃��̄�+2𝑁 , . . . , �̃�𝑁−�̄� 𝑁)

satisfies �̃�𝑖𝑁 ≥ 0 and
∑︀𝑁

𝑖=�̄�+1 �̃�𝑖𝑁 = 1. For all 𝑁 > �̃� we have that �̃�𝑖𝑁 ≤ 𝜀−1
𝑤 𝑤𝑖𝑁 ,

which implies that sup𝑖>�̄� �̃�𝑖𝑁 ≤ 𝜀−1
𝑤 sup𝑗>�̄� 𝑤𝑖𝑁 = 𝑜(𝑁−1/2). By lemma A.2.4 taken with

𝛾 = 1/2, we obtain that
∑︀𝑁

𝑖=�̄�+1 �̃�𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1) =

∑︀𝑁
𝑖=�̄�+1 �̃�𝑖𝑁𝑑

′
0𝜂𝑖 − 𝑑′

0𝜂1 → −𝑑′
0𝜂1

(a.s. with respect to the distribution of 𝜂). The weights �̃� satisfy the hypothesis of

lemma A.2.4 with the limit weights equal to the zero sequence as sup𝑖>�̄� �̃�𝑖𝑁 = 𝑜(𝑁−1/2).

Since
∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1) =

(︁
1−

∑︀�̄�
𝑖=1𝑤𝑖𝑁

)︁∑︀𝑁
𝑖=�̄�+1 �̃�𝑖𝑁𝑑

′
0(𝜂𝑖 − 𝜂1), we obtain that⃒⃒⃒∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)−

(︁
1−

∑︀�̄�
𝑖=1𝑤𝑖

)︁
(−𝑑′

0𝜂1)
⃒⃒⃒
→ 0. Together with eqs. (OA.2) and

(OA.3), this implies that in this case

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁Λ𝑖
𝑝−→ −

(︃
1−

�̄�∑︁
𝑖=1

𝑤𝑖

)︃
𝑑′
0𝜂1 .

Case II : suppose that
∑︀�̄�

𝑖=1𝑤𝑖 = 1. We show that
∑︀𝑁

𝑖=�̄�+1 𝑤𝑖𝑁𝑑
′
0(𝜂𝑖−𝜂1) −→ 0 𝜂-a.s.. First,∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁𝑑
′
0𝜂1 = 𝑑′

0𝜂1

∑︀𝑁
𝑖=�̄�+1𝑤𝑖𝑁 → 0 by the assumption that

∑︀�̄�
𝑖=1 𝑤𝑖𝑁 → 1. Second,∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁𝑑
′
0𝜂𝑖 −→ E𝜂(𝑑

′
0𝜂𝑖) = 0 by lemma A.2.3, since 𝑑′

0𝜂𝑖 are independent variables

with uniformly bounded third moments. As above, this argument and eqs. (OA.2) and

(OA.3) imply that
∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁Λ𝑖
𝑝−→ 0.

Combining the two cases yields the assertion.

Lemma OA.1.5. Let 𝑌𝑖 𝑇 be defined as in eq. (OA.1). Under assumptions of theorem
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OA.1.1

lim sup
𝑁,𝑇→∞

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 |E(𝑌𝑖 𝑇 )− E(Λ𝑖)| = 0 as 𝑁, 𝑇 → ∞.

Proof. First, from lemma A.2.2 it follows that E|𝑌𝑖 𝑇 | exists for all 𝑖 and 𝑇 > 𝑇0. By lemma

1, EΛ𝑖 = 𝑑′
0(𝜂𝑖 − 𝜂1). By eq. (A.1.2) of lemma A.1.1, we have

𝜇(𝜃𝑖) = 𝜇(𝜃1) + 𝑑′
1

(︁
𝜃𝑖 − 𝜃1

)︁
+

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)(𝜃𝑖 − 𝜃1), (OA.4)

where 𝑑1 = ∇𝜇(𝜃1) and 𝜃𝑖 lies on the segment joining 𝜃𝑖 and 𝜃1. Then

𝑌𝑖 𝑇 − E(Λ𝑖) = 𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
+

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)− 𝑑′

0(𝜂𝑖 − 𝜂1). (OA.5)

We now establish a bound on |E(𝑌𝑖 𝑇 )− E(Λ𝑖)|. Take expectations in eq. (OA.5):

|E(𝑌𝑖 𝑇 )− E(Λ𝑖)|

=

⃒⃒⃒⃒
E
[︂
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
+

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)− 𝑑′

0(𝜂𝑖 − 𝜂1)

]︂⃒⃒⃒⃒
(*) ≤

⃒⃒⃒
𝑑′
1 E
[︁√

𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁]︁⃒⃒⃒
+

⃒⃒⃒⃒
E
[︂
1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

]︂⃒⃒⃒⃒
+ |(𝑑1 − 𝑑0)

′(𝜂𝑖 − 𝜂1)|

(**) ≤ ‖𝑑1‖
𝐶𝐵𝑖𝑎𝑠√

𝑇
+ 𝐶∇2𝜇

⃒⃒⃒
E
(︁√

𝑇 (𝜃𝑖 − 𝜃1)
′(𝜃𝑖 − 𝜃1)

)︁⃒⃒⃒
+

𝐶∇2𝜇√
𝑇

‖𝜂1‖ ‖𝜂1 − 𝜂1‖

(* * *) ≤ ‖𝑑1‖
𝐶𝐵𝑖𝑎𝑠√

𝑇
+

𝐶∇2𝜇√
𝑇

E
⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦2

+
2𝐶∇2𝜇√

𝑇
E
⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦
‖𝜂𝑖 − 𝜂1‖

+
𝐶∇2𝜇√

𝑇
‖𝜂𝑖 − 𝜂1‖2 +

𝐶∇2𝜇√
𝑇

‖𝜂1‖ ‖𝜂1 − 𝜂1‖

(* * **) ≤ 𝐶∇𝜇
𝐶𝐵𝑖𝑎𝑠√

𝑇
+

𝐶∇2𝜇𝐶𝜃,2√
𝑇

+
𝐶∇2𝜇√

𝑇

(︁
2𝐶𝜃,1 + ‖𝜂1‖

)︁
‖𝜂𝑖 − 𝜂1‖

+
𝐶∇2𝜇√

𝑇
‖𝜂𝑖 − 𝜂1‖2 . (OA.6)

where the constants 𝐶 do not depend on 𝑖. Here

(*) 𝜃1 is replaced by 𝜃𝑖 in the first term using 𝑑′
1

√
𝑇 (𝜃𝑖−𝜃1)−𝑑′

1(𝜂𝑖−𝜂1) = 𝑑′
1

√
𝑇 (𝜃𝑖−𝜃𝑖)

OA-8



(**) In the first term we apply Hölder’s inequality inside the absolute value as

⃒⃒⃒
𝑑′
1 E
[︁√

𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁]︁⃒⃒⃒
≤ ‖𝑑1‖∞

⃦⃦⃦
E(

√
𝑇 (𝜃𝑖 − 𝜃𝑖))

⃦⃦⃦
1
≤ ‖𝑑1‖2

√
𝑇
⃦⃦⃦
E(𝜃𝑖 − 𝜃𝑖)

⃦⃦⃦
1
.

Assumption A.4 bounds
√
𝑇
⃦⃦⃦
E(𝜃𝑖 − 𝜃𝑖)

⃦⃦⃦
1
≤ 𝐶𝐵𝑖𝑎𝑠/

√
𝑇 . In the second term apply

A.5 to replace the Hessian ∇2𝜇(𝜃𝑖). In the third term apply assumptions A.1 and A.5:

∇𝜇 is a differentiable function with norm of the derivative bounded, which implies

that ‖𝑑1 − 𝑑0‖ =
⃦⃦
∇𝜇(𝜃0 + 𝑇−1/2𝜂1)−∇𝜇(𝜃0)

⃦⃦
≤ 𝐶∇2𝜇 ‖𝜂1‖/

√
𝑇 .

(***) Add and subtract 𝜃1 in both parentheses in the quadratic term, apply the triangle

inequality.

(****) Recall that 𝜃𝑖 − 𝜃1 = (𝜂𝑖 − 𝜂1)/
√
𝑇 by A.1. Expectations of

⃦⃦⃦√
𝑇 (𝜃𝑖 − 𝜃𝑖)

⃦⃦⃦
are

bounded using lemma A.2.1; by A.5 ‖𝑑1‖ ≤ 𝐶∇𝜇

Last, we can consider the sum
∑︀𝑁

�̄�+1 𝑤𝑖𝑁 |E(𝑌𝑖 𝑇 )− E(Λ𝑖)|, bounded by the corresponding

weighted sum of the right hand side of eq. (OA.6). The first two terms in the bound do not

depend on 𝑖, and so

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁

[︂
𝐶∇𝜇𝐶𝐵𝑖𝑎𝑠√

𝑇
+

𝐶∇2𝜇𝐶𝜃,2√
𝑇

]︂
≤ 𝐶∇𝜇𝐶𝐵𝑖𝑎𝑠√

𝑇
+

𝐶∇2𝜇𝐶𝜃,2√
𝑇

→ 0

since 𝑤𝑖𝑁 are part of a weight vector. For the third and the fourth term we make use of

the conditions on weight decay and the moments of 𝜂𝑖. Examine

𝐶∇2𝜇√
𝑇

[︁
2𝐶𝜃,2 + ‖𝜂1‖

]︁ 𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖+
𝐶∇2𝜇√

𝑇

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2 .

By lemma A.2.4 sup𝑁

∑︀𝑁
𝑖=�̄�+1 𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖𝑘, 𝑘 = 1, 2 are finite. Then for some 𝑀 < ∞

the above display is bounded by 𝑀/
√
𝑇 and thus converges to zero as well. Combining the

last two results together, we obtain that sup𝑁

∑︀𝑁
𝑖=�̄�+1𝑤𝑖𝑁 |E(𝑌𝑖 𝑇 )−E(Λ𝑖)| → 0 as 𝑇 → ∞,

giving the result of the lemma.
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Lemma OA.1.6. Let 𝑌𝑖 𝑇 be defined as in eq. (OA.1). Under assumptions of theorem

OA.1.1

lim sup
𝑁,𝑇→∞

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 E|𝑌𝑖 𝑇 | < ∞ as 𝑁, 𝑇 → ∞.

Proof. Existence of E|𝑌𝑖 𝑇 | for 𝑇 > 𝑇0 follows from lemma A.2.2. Add and subtract E(Λ𝑖)

under the absolute value in E|𝑌𝑖 𝑇 | to get

E|𝑌𝑖 𝑇 | ≤ |E(Λ𝑖)|+ E|𝑌𝑖 𝑇 − E(Λ𝑖)|

= |𝑑′
0(𝜂𝑖 − 𝜂1)|+ E|𝑌𝑖 𝑇 − E(Λ𝑖)|

≤ ‖𝑑0‖ ‖𝜂𝑖 − 𝜂0‖+ E|𝑌𝑖 𝑇 − E(Λ𝑖)| ,

where we apply the Cauchy-Schwarz inequality in the last line. Take weighted sums

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 E|𝑌𝑖 𝑇 | ≤ ‖𝑑0‖
𝑁∑︁

𝑖=�̄�+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖+
𝑁∑︁

𝑖=�̄�+1

𝑤𝑖𝑁 E|𝑌𝑖 𝑇 − Λ𝑖|.

We show that both sums are bounded as 𝑁, 𝑇 → ∞. First, as in lemma OA.1.5, from

lemma A.2.4 it follows that sup𝑁

∑︀𝑁
𝑖=�̄�+1𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖ < ∞. Now turn to the second sum.

Using eq. (OA.4), we proceed similarly to the proof of lemma OA.1.5:

E|(𝑌𝑖 𝑇 )− E(Λ𝑖)|

= E
⃒⃒⃒⃒[︂
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
+

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)− 𝑑′

0(𝜂𝑖 − 𝜂1)± 𝑑′
1(𝜂𝑖 − 𝜂1)

]︂⃒⃒⃒⃒
≤ E

⃒⃒⃒
𝑑′
1

[︁√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁]︁⃒⃒⃒
+ E

⃒⃒⃒⃒[︂
1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

]︂⃒⃒⃒⃒
+ |(𝑑1 − 𝑑0)

′(𝜂𝑖 − 𝜂1)|

≤ 𝐶∇𝜇𝐶𝜃,1 +
𝐶∇2𝜇𝐶𝜃,2√

𝑇
+

𝐶∇2𝜇√
𝑇

[︁
2𝐶𝜃,1 + ‖𝜂1‖

]︁
‖𝜂𝑖 − 𝜂1‖+

𝐶∇2𝜇√
𝑇

‖𝜂𝑖 − 𝜂1‖2 .

There is one change relative to lemma OA.1.5: by the Cauchy-Schwarz inequality and

assumption A.5, E
⃒⃒⃒
𝑑′
1

[︁√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁]︁⃒⃒⃒
≤ 𝐶∇𝜇 E

⃦⃦⃦√
𝑇 (𝜃𝑖 − 𝜃𝑖)

⃦⃦⃦
, to which we then ap-

ply lemma A.2.1. The constant 𝐶𝐵𝑖𝑎𝑠 does not appear in the above bound. Take
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weighted sums in
∑︀𝑁

𝑖=�̄�+1 𝑤𝑖𝑁 E|𝑌𝑖 𝑇 − Λ𝑖|, and use the above bound for each term in

the sum. The argument proceeds similarly to lemma OA.1.5. The first two terms in

the bound satisfy
∑︀𝑁

𝑖=�̄�+1 𝑤𝑖𝑁

(︁
𝐶∇𝜇𝐶𝜃,1 + 𝐶∇2𝜇𝐶𝜃,2/

√
𝑇
)︁

≤ 𝐶∇𝜇𝐶𝜃,1 + 𝐶∇2𝜇𝐶𝜃,2/
√
𝑇 ,

which is independent of 𝑁 and convergent in 𝑇 . Both sums
∑︀𝑁

𝑖=�̄�+1 𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖ and∑︀𝑁
𝑖=�̄�+1𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2 are bounded in 𝑁 regardless of 𝑇 by lemma A.2.4. We conclude

that
∑︀𝑁

𝑖=�̄�+1 𝑤𝑖𝑁 E|𝑌𝑖 𝑇 − Λ𝑖| is bounded in 𝑁 and 𝑇 , giving the claim of the lemma.

Lemma OA.1.7. Let assumptions of theorem OA.1.1 hold, and let Λ𝑖 be as in lemma 1.

Then for any 𝜀 > 0

lim sup
𝑁→∞

𝑁∑︁
𝑖=�̄�+1

E
[︀
𝑤𝑖𝑁 |Λ𝑖|I|𝑤𝑖 𝑁Λ𝑖|>𝜀

]︀
= 0.

Proof. Since sup𝑖>�̄� 𝑤𝑖𝑁 = 𝑜(𝑁−1/2), there exists some 𝐶𝑤 > 0 and 𝑁0 such that for

all 𝑁 > 𝑁0 it holds that 𝑤𝑖𝑁 < 𝐶−1
𝑤 𝑁−1/2 for all 𝑖 > �̄� . Also observe that for 𝑝 > 1

E(|𝑋| I𝑋>𝑀) ≤ 𝑀−(𝑝−1) E(|𝑋|𝑝). Hence for 𝑝 > 1

𝑁∑︁
𝑖=�̄�+1

E
[︀
𝑤𝑖𝑁 |Λ𝑖|I|𝑤𝑖 𝑁Λ𝑖|>𝜀

]︀
≤

𝑁∑︁
𝑖=�̄�+1

E
[︀
𝑤𝑖𝑁 |Λ𝑖| I|Λ𝑖>𝐶𝑤𝑁1/2𝜀|

]︀
≤ 1

(𝐶𝑤𝜀𝑁1/2)𝑝−1

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 E(|Λ𝑖|𝑝). (OA.7)

Pick 𝑝 = 2. Since 1/(𝐶𝑤𝜀𝑁
1/2) → 0, it is sufficient to show that

∑︀𝑁
𝑖=�̄�+1𝑤𝑖𝑁 E(|Λ𝑖|2) is

bounded over 𝑁 .

Since |Λ𝑖| is folded normal, its first two moments are given by (see Elandt (1961)):

E|Λ𝑖|2 = (𝑑′
0(𝜂𝑖 − 𝜂1))

2 + 𝑑′
0𝑉𝑖𝑑0 − (E|Λ𝑖|)2,

E|Λ𝑖| =
√︀

𝑑′
0𝑉𝑖𝑑0

√︂
2

𝜋
𝑒
− (𝑑′0(𝜂𝑖−𝜂1))

2

2𝑑′0𝑉𝑖𝑑0 + 𝑑′
0(𝜂𝑖 − 𝜂1)

(︃
1− 2Φ

(︃
−𝑑′

0(𝜂𝑖 − 𝜂1)

2
√︀

𝑑′
0𝑉𝑖𝑑0

)︃)︃
.

It is sufficient to establish the boundedness of the weighted sum of each term separately.

We proceed in order of appearance in the preceding display.
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1. By the Cauchy-Schwarz inequality

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁(𝑑
′
0(𝜂𝑖 − 𝜂1))

2 ≤ ‖𝑑0‖2
𝑁∑︁

𝑖=�̄�+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2 .

The sum on the right is bounded over 𝑁 by lemma A.2.4.

2. By the bound on variance of assumption A.3 it holds that

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁𝑑
′
0𝑉𝑖𝑑0 ≤ �̄�Σ𝜆

2
𝐻 ‖𝑑0‖2 .

3. Consider the first term in (E|Λ𝑖|)2:

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁𝑑
′
0𝑉𝑖𝑑0

2

𝜋

[︃
𝑒
− (𝑑′0(𝜂𝑖−𝜂1))

2

2𝑑′0𝑉𝑖𝑑0

]︃2
≤ �̄�Σ𝜆

2
𝐻 ‖𝑑0‖2

2

𝜋
.

4. Cross-term in (E|Λ𝑖|)2:

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁

⃒⃒⃒⃒
⃒√︀𝑑′

0𝑉𝑖𝑑0

√︂
2

𝜋
𝑒
− (𝑑′0(𝜂𝑖−𝜂1))

2

2𝑑′0𝑉𝑖𝑑0 𝑑′
0(𝜂𝑖 − 𝜂1)

(︃
1− 2Φ

(︃
−𝑑′

0(𝜂𝑖 − 𝜂1)

2
√︀

𝑑′
0𝑉𝑖𝑑0

)︃)︃⃒⃒⃒⃒
⃒

≤
√︁

�̄�Σ𝜆
2
𝐻 ‖𝑑0‖2

√︂
2

𝜋

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖ .

The sum in the last line is bounded over 𝑁 by lemma A.2.4.

5. Square of the second term:

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 [𝑑′
0(𝜂𝑖 − 𝜂1)]

2

(︃
1− 2Φ

(︃
−𝑑′

0(𝜂𝑖 − 𝜂1)

2
√︀

𝑑′
0𝑉𝑖𝑑0

)︃)︃2

≤
𝑁∑︁

𝑖=�̄�+1

𝑤𝑖𝑁 [𝑑′
0(𝜂𝑖 − 𝜂1)]

2 ≤ ‖𝑑0‖2
𝑁∑︁

𝑖=�̄�+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2 ,

where the last sum is bounded by lemma A.2.4.

Combining the above arguments, we conclude that sup𝑁

∑︀𝑁
𝑖=�̄�+1𝑤𝑖𝑁 E(|Λ𝑖|2) < ∞. By eq.

OA-12



(OA.7)
𝑁∑︁

𝑖=�̄�+1

E
[︀
𝑤𝑖𝑁 |Λ𝑖|I|𝑤𝑖 𝑁Λ𝑖|>𝜀

]︀
≤ 1

𝐶𝑤𝜀𝑁1/2
sup
𝑁

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 E(|Λ𝑖|2

The right hand side tends to 0 as 𝑁 → ∞.

Lemma OA.1.8. Let 𝑌𝑖 𝑇 be defined as in eq. (OA.1). Under assumptions of theorem

OA.1.1, for any 𝜀 > 0

lim sup
𝑁,𝑇→∞

𝑁∑︁
𝑖=�̄�+1

E
[︀
𝑤𝑖𝑁 |𝑌𝑖 𝑇 |I|𝑤𝑖 𝑁𝑌𝑖 𝑇 |>𝜀

]︀
= 0.

Proof. Existence of E|𝑌𝑖 𝑇 | for 𝑇 > 𝑇0 follows from lemma A.2.2. We use the same strategy

as in lemma OA.1.7. Since sup𝑖>�̄� 𝑤𝑖𝑁 = 𝑜(𝑁−1/2), there exists some 𝐶𝑤 > 0 and 𝑁0 such

that for all 𝑁 > 𝑁0 it holds that 𝑤𝑖𝑁 < 𝐶−1
𝑤 𝑁−1/2 for all 𝑖 > �̄� . Then for 𝑝 > 1, if E|𝑌𝑖 𝑇 |𝑝

exists, we obtain that

𝑁∑︁
𝑖=�̄�+1

E
[︀
𝑤𝑖𝑁 |𝑌𝑖 𝑇 |I|𝑤𝑖 𝑁𝑌𝑖 𝑇 |>𝜀

]︀
≤

𝑁∑︁
𝑖=�̄�+1

E
[︀
𝑤𝑖𝑁 |𝑌𝑖 𝑇 |I|𝑌𝑖 𝑇 |>𝐶𝑤𝑁1/2𝜀

]︀
≤ 1

(𝐶𝑤𝜀𝑁1/2)𝑝−1

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖,𝑁 E [|𝑌𝑖 𝑇 |𝑝]

≤ 2𝑝−1

(𝐶𝑤𝜀𝑁1/2)𝑝−1

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 E|𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1)|𝑝

+
2𝑝−1

(𝐶𝑤𝜀𝑁1/2)𝑝−1

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 |𝑑′
1(𝜂𝑖 − 𝜂1)|𝑝. (OA.8)

It is sufficient to establish convergence of the weighted sums for some 𝑝 > 1, since the

leading 𝑁 (𝑝−1)/2 will then drive the expression to zero. Take 𝑝 = 1+ 𝛿′ where 𝛿′ = 𝛿/2 for 𝛿

from assumption A.3.

The second sum in eq. (OA.8) is bounded over 𝑁 by lemma A.2.4, as

𝑁∑︁
�̄�+1

𝑤𝑖𝑁 |𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′ ≤ 𝐶1+𝛿′

∇𝜇

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖1+𝛿′ .

OA-13



Now consider
∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁 E|𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′ . We proceed similarly to the proof

of lemma OA.1.6. First, by lemma A.2.2 E|𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′ < ∞. It remains to show

that the weighted sum is bounded over 𝑁 . Recall from lemma OA.1.5 that

𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1) = 𝑑′

1

√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁
+

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

for 𝜃𝑖 is intermediate between 𝜃𝑖 and 𝜃1. Then

|𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′

≤ 2𝛿
′
⃒⃒⃒
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁⃒⃒⃒1+𝛿′

+ 2𝛿
′
⃒⃒⃒⃒
1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

⃒⃒⃒⃒1+𝛿′

≤ 2𝛿
′
⃒⃒⃒
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁⃒⃒⃒1+𝛿′

+
22𝛿

′
𝐶1+𝛿′

∇2𝜇

𝑇 (1+𝛿′)/2

⃦⃦⃦√
𝑇 (𝜃 − 𝜃𝑖)

⃦⃦⃦2(1+𝛿′)

+ 21+3𝛿′𝐶1+𝛿′

∇2𝜇

⃒⃒⃒⃒√
𝑇 (𝜃𝑖 − 𝜃𝑖)

′ (𝜂𝑖 − 𝜂1)√
𝑇

⃒⃒⃒⃒1+𝛿′

+
22𝛿

′
𝐶1+𝛿′

∇2𝜇

𝑇 (1+𝛿′)/2
|(𝜂𝑖 − 𝜂1)

′(𝜂𝑖 − 𝜂1)|1+𝛿′
.

Taking expectations, we obtain

E|𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′ (OA.9)

≤ 21+3𝛿′

[︃
𝐶1+𝛿′

𝜇 𝐶𝜃,1+𝛿/2 +
𝐶1+𝛿′

∇2𝜇 𝐶𝜃,2+𝛿

𝑇 (1+𝛿′)/2

+
2𝐶1+𝛿′

∇2𝜇 𝐶𝜃,1+𝛿/2

𝑇 (1+𝛿′)/2
‖𝜂𝑖 − 𝜂1‖1+𝛿′ +

𝐶1+𝛿′

∇2𝜇

𝑇 (1+𝛿′)/2
‖𝜂𝑖 − 𝜂1‖2(1+𝛿′)

]︃
,

where the bounds on E
⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦𝑘

, 𝑘 = 1 + 𝛿/2, 2 + 𝛿 follow from lemma A.2.1.

Take weighted sums
∑︀𝑁

𝑖=�̄�+1 𝑤𝑖𝑁 E|𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′ . Then for the first two terms

it holds that

𝑁∑︁
𝑖=�̄�+1

𝑤𝑖𝑁𝐶
1+𝛿
∇𝜇 𝐶𝜃,1+𝛿/2 +

𝐶1+𝛿′

∇2𝜇 𝐶𝜃,2+𝛿

𝑇 (1+𝛿′)/2
≤ 𝐶1+𝛿

∇𝜇 𝐶𝜃,1+𝛿/2 +
𝐶1+𝛿′

∇2𝜇 𝐶𝜃,2+𝛿

𝑇 (1+𝛿′)/2
,

since constants are independent of 𝑖. For the third and the fourth term of eq. (OA.9), it

is sufficient to observe that by lemma A.2.4 sup𝑁

∑︀𝑁
𝑖=�̄�+1 𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2(1+𝛿′) < ∞ and
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sup𝑁

∑︀𝑁
𝑖=�̄�+1 𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖1+𝛿′ < ∞.

Hence, both sums in eq. (OA.8) are bounded uniformly over 𝑁 . Taking 𝑁 → ∞ shows

the original sum of interest converges to 0.

Finally, we present the proof of theorem OA.1.1.

Proof of theorem OA.1.1. Using the fact that
∑︀𝑁

𝑖=1𝑤𝑖𝑁 = 1 and recalling that 𝑁 > �̄� we

write

√
𝑇 (�̂�(𝑤𝑁)− 𝜇(𝜃1)) =

𝑁∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 =
�̄�∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 +
𝑁∑︁

𝑖=�̄�+1

𝑤𝑖𝑁𝑌𝑖 𝑇 .

The first sum contains the units whose weights are allowed to be asymptotically non-

negligible. By lemma OA.1.3, as 𝑁, 𝑇 → ∞ jointly, it holds that

�̄�∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 ⇒
�̄�∑︁
𝑖=1

𝑤𝑖Λ𝑖 ∼ 𝑁

(︃
�̄�∑︁
𝑖=1

𝑤𝑖𝑑
′
1(𝜂𝑖 − 𝜂1),

�̄�∑︁
𝑖=1

𝑤2
𝑖𝑑

′
1𝑉𝑖𝑑1

)︃
.

The second sum contains the units whose weights satisfy sup𝑖>�̄� 𝑤𝑖𝑁 = 𝑜(𝑁−1/2). By

appealing to lemma OA.1.2, we show that
∑︀𝑁

𝑖=�̄�+1𝑤𝑖𝑁𝑌𝑖 𝑇
𝑝−→ −

(︁
1−

∑︀�̄�
𝑖=1 𝑤𝑖

)︁
𝑑′
0𝜂1 as

𝑁, 𝑇 → ∞ jointly. We turn to verifying the conditions of lemma OA.1.2:

1. Assumption 1 (large 𝑇 step): follows from lemma 1 as

𝑌𝑖 𝑇 ⇒ Λ𝑖 ∼ 𝑁 (𝑑′
0(𝜂𝑖 − 𝜂1),𝑑

′
0𝑉𝑖𝑑0) .

2. Assumption 2 (large 𝑁 step): by lemma OA.1.4,
∑︀𝑁

𝑖=�̄�+1 𝑤𝑖𝑁Λ𝑖 converges in proba-

bility to −
(︁
1−

∑︀�̄�
𝑖=1 𝑤𝑖

)︁
𝑑′
0𝜂1

3. Assumptions 3-6 are verified by lemmas OA.1.5-OA.1.8, respectively.

Last, by Slutsky’s theorem

�̄�∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 +
𝑁∑︁

𝑖=�̄�+1

𝑤𝑖𝑁𝑌𝑖 𝑇
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⇒ 𝑁

(︃
�̄�∑︁
𝑖=1

𝑤𝑖𝑑
′
0(𝜂𝑖 − 𝜂1)−

(︃
1−

�̄�∑︁
𝑖=1

𝑤𝑖

)︃
𝑑′
0𝜂1,

�̄�∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0

)︃
,

which establishes the claim.

OA.2 Alternative Loss Functions

It may be of interest to measure the quality of the averaging estimator using criteria other

than the mean squared error (MSE). Generically, let 𝑙 be a loss function, and suppose that

we measure estimation quality with the corresponding risk:

𝑅(𝜇(𝜃1), �̂�(𝑤𝑁)) := E [𝑙(𝜇(𝜃1), �̂�(𝑤𝑁))] . (OA.10)

In this section, we extend the analysis of the main text to accommodate two different

classes of loss functions 𝑙. First, in section OA.2.1 we show that 𝑅(𝜇(𝜃1), �̂�(𝑤𝑁)) behaves

essentially like the MSE for a broad class of smooth loss functions. In this case the

MSE-optimal weights of section 2 also serve as feasible risk-optimal weights under the risk

𝑅. Second, in section OA.2.2 we obtain an explicit local approximation to the risk if 𝑙

is the absolute loss, in which case 𝑅 is the mean absolute deviation (MAD). The local

approximation to the MAD is different from the MSE, but still amenable to minimization

over averaging weights. The proofs for this section are collected in subsection OA.2.3.

OA.2.1 Smooth Loss Functions

We consider the class of locally quadratic loss functions (Hansen, 2016). Intuitively, a loss

function is locally quadratic if it is a smooth function of the estimator, and the corresponding

second derivative is nonzero when the estimator is close to the target value; assumption

OA.A.1 below provides a formal definition. This is a broad class of loss functions that

includes the squared and linear-exponential losses, losses based on smooth non-linear utility

functions, and various integrated losses such as the Hellinger distance; see section 2.2 in
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Hansen (2016) for a list of examples.

For locally quadratic losses, the corresponding risk (OA.10) behaves like the MSE up

to a negligible difference term in our framework, as theorem OA.2.1 below shows. The

local approximations for the MSE of section 3 of the main text are then also valid local

approximations for risk (OA.10). In practical terms, this result means that one may use

the fixed-𝑁 and large-𝑁 weights of eqs. (4) and (6) as feasible minimal risk weights for risk

(OA.10).

Formally, we assume that the loss function 𝑙 in eq. (OA.10) satisfies the following

assumption:

OA.A.1 (Locally quadratic loss). (i) The function 𝑙(·, ·) is defined on 𝜇(Θ)× 𝜇(Θ)

where Θ is the parameter space (as in A.3) and 𝜇(Θ) is the image of Θ under 𝜇.

(ii) 𝑙 is a loss function: the function 𝑙(·, ·) satisfies 𝑙(𝑥, 𝑥) = 0 and 𝑙(𝑥, 𝑦) > 0 for

𝑥, 𝑦 ∈ 𝜇(Θ), 𝑥 ̸= 𝑦.

(iii) 𝑙 is smooth: for any 𝑥 ∈ 𝜇(Θ) the function 𝑙(𝑥, 𝑦) is at least three times differentiable

in 𝑦.

(iv) Bounded second and third derivative: let 𝜕𝑘
2 𝑙(·, ·) be the 𝑘th partial derivative of 𝑙(·, ·)

with respect to its second argument. Then there exist finite constants 𝐶𝑘 such that

sup𝑥,𝑦∈𝜇(Θ)

⃒⃒
𝜕𝑘
2 𝑙(𝑥, 𝑦)

⃒⃒
≤ 𝐶𝑘 for 𝑘 = 2, 3.

(v) Nonzero second derivative around target value: there exists a 𝜀 > 0 such that ‖𝑥− 𝑦‖ <

𝜀 implies that |𝜕2
2 𝑙(𝑥, 𝑦)| > 𝜀.

Assumption OA.A.1 formally defines the class of locally quadratic loss functions. It is

fairly mild and covers a number of standard loss functions, as noted above. Condition (𝑖𝑣)

holds if the parameter space Θ is compact and (𝑖)-(𝑖𝑖𝑖) hold; alternatively, (𝑖𝑣) may be

relaxed to an integrability condition by trimming the loss as in Hansen (2016).

We now show that risk OA.10 locally behaves similarly to (scaled) MSE, up to a negligible

component. Let the weight sequence 𝑤𝑁 = (𝑤𝑖𝑁) be as defined before theorem 1 in the

main text.
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Theorem OA.2.1. Let condition A.3 hold with 𝛿 > 2. Let the conditions of theorem OA.1.1

hold. Let the loss function 𝑙(·, ·) satisfy OA.A.1.

Then (i) for any 𝑁 and any 𝑇 > 𝑇0 the risk (OA.10) of the unit averaging estimator is

finite; (ii) as 𝑁, 𝑇 → ∞ jointly, it holds that

𝑇 ×𝑅(𝜇(𝜃1), �̂�(𝑤𝑁)) = 𝑇 ×
(︂
1

2
𝜕2
2 𝑙 (𝜇(𝜃1), 𝜇(𝜃1))×𝑀𝑆𝐸(�̂�(𝑤𝑁))

)︂
+ 𝑜(1). (OA.11)

Intuitively, for locally quadratic losses, the risk of a consistent estimator is dominated

by its (suitably rescaled) bias and variance. Accordingly, minimizing the MSE of the unit

averaging estimator also approximately minimizes its risk (OA.10). See also Hansen (2016)

for a similar result for shrinkage estimators in parametric settings.

Remark OA.2.1 (Higher-order loss functions). The assumption of a (locally) nonzero

second derivative is crucial to the results of theorem OA.2.1. Eq. (OA.11) does not hold if

the loss function 𝑙(·, ·) is a higher-order loss in the sense that 𝜕2
2 𝑙(𝑥, 𝑥) = 0 for all 𝑥; the

quartic loss 𝑙(𝑥, 𝑦) = (𝑥− 𝑦)4 is an example of a such a function.

However, it is possible to obtain results in the spirit of theorem OA.2.1 for higher-order

losses. Suppose that 𝑙(·, ·) is a 𝑘th order loss in sense that 𝜕𝑗
2𝑙(𝑥, 𝑥) = 0 for 𝑗 = 0, 1, . . . , 𝑘−1

and 𝜕𝑘
2 𝑙(𝑥, 𝑥) is bounded away from zero for some even 𝑘. In this case 𝑇 𝑘/2𝑅(𝜇(𝜃1), �̂�(𝑤𝑁 )) =

𝑇 𝑘/2 E
[︀
(𝜇(𝜃1)− �̂�(𝑤𝑁))

𝑘
]︀
+𝑜(1). In turn, an explicit local approximation for 𝑇 𝑘/2 E[(𝜇(𝜃1)−

�̂�(𝑤𝑁))
𝑘] may be obtained by suitably modifying the proof of theorem 1 in the main text.

OA.2.2 Absolute Loss

An important loss function that does not satisfy OA.A.1 is the absolute loss, which leads to

the mean absolute error (MAD):

𝑀𝐴𝐷(�̂�(𝑤𝑁)) := E [|�̂�(𝑤𝑁)− 𝜇(𝜃1)|] .

The following theorem shows that an explicit local approximation to the MAD is possible,
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although the expression is notably different from that for smooth loss functions.

Theorem OA.2.2. Let conditions of theorem OA.1.1 hold.

Then (i) for all 𝑁, 𝑇 > 𝑇0, the MAD of the averaging estimator is finite; (ii) as

𝑁, 𝑇 → ∞ jointly, it holds that

𝑇 1/2 ×𝑀𝐴𝐷(�̂�(𝑤𝑁))

→

⎯⎸⎸⎷ �̄�∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0

√︂
2

𝜋
exp

⎛⎜⎝−

(︁∑︀�̄�
𝑖=1𝑤𝑖𝑑

′
0𝜂𝑖 − 𝑑′

0𝜂1

)︁2
2
∑︀�̄�

𝑖=1𝑤
2
𝑖𝑑

′
0𝑉𝑖𝑑0

⎞⎟⎠ (OA.12)

+

(︃
�̄�∑︁
𝑖=1

𝑤𝑖𝑑
′
0𝜂𝑖 − 𝑑′

0𝜂1

)︃⎛⎝1− 2Φ

⎛⎝−
∑︀�̄�

𝑖=1𝑤𝑖𝑑
′
0𝜂𝑖 − 𝑑′

0𝜂1√︁∑︀�̄�
𝑖=1𝑤

2
𝑖𝑑

′
0𝑉𝑖𝑑0

⎞⎠⎞⎠ .

Feasible minimum MAD weights may now be obtained by replacing the population

quantities in eq. (OA.12) with the estimators of section 3 and minimizing the resulting

function.

OA.2.3 Proofs For Section OA.2

Proof of theorem OA.2.1. To begin, we expand 𝑙 (𝜇(𝜃1), �̂�(𝑤𝑁)) around 𝜇(𝜃1) to obtain

𝑙 (𝜇(𝜃1), �̂�(𝑤𝑁)) = 𝑙(𝜇(𝜃1), 𝜇(𝜃1)) + 𝜕2𝑙 (𝜇(𝜃1), 𝜇(𝜃1)) (𝜇(𝜃1)− �̂�(𝑤𝑁))

+
1

2
𝜕2
2 𝑙 (𝜇(𝜃1), �̃�) (𝜇(𝜃1)− �̂�(𝑤𝑁))

2

=
1

2
𝜕2
2 𝑙 (𝜇(𝜃1), �̃�) (𝜇(𝜃1)− �̂�(𝑤𝑁))

2 , (OA.13)

where 𝜕2𝑙(·, ·) is the derivative with respect to the second argument of 𝑙; �̃� lies in the interval

between 𝜇(𝜃1) and �̂�(𝑤𝑁); and we use that 𝑙 (𝜇(𝜃1), 𝜇(𝜃1)) = 𝜕2𝑙 (𝜇(𝜃1), 𝜇(𝜃1)) = 0 under

OA.A.1.

By OA.A.1, |𝜕2
2 𝑙 (𝜇(𝜃1), �̃�)| < 𝐶2 for some finite constant 𝐶2. (𝑖) then follows from eq.

(OA.13) and theorem 1 as E
[︀
(𝜇(𝜃1)− �̂�(𝑤𝑁))

2]︀ < ∞ for all 𝑁, 𝑇 > 𝑇0.
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We now turn to establishing (𝑖𝑖). By equation (OA.13), the risk (OA.A.1) can be written

𝑅(𝜇(𝜃1), �̂�(𝑤𝑁))

=
1

2
𝜕2
2 𝑙 (𝜇(𝜃1), 𝜇(𝜃1))𝑀𝑆𝐸(�̂�(𝑤𝑁))

+ E
[︀(︀
𝜕2
2 𝑙 (𝜇(𝜃1), �̃�)− 𝜕2

2 𝑙 (𝜇(𝜃1), 𝜇(𝜃1))
)︀
(𝜇(𝜃1)− �̂�(𝑤𝑁))

2]︀ , (OA.14)

where the existence of the last moment in eq. (OA.14) is established below in eq. (OA.16).

To bound the moment term in eq (OA.14), first note that by OA.A.1 and the mean

value theorem it holds that

⃒⃒
𝜕2
2 𝑙 (𝜇(𝜃1), �̃�)− 𝜕2

2 𝑙 (𝜇(𝜃1), 𝜇(𝜃1))
⃒⃒
=
⃒⃒
𝜕3
2 𝑙 (𝜇(𝜃1), �̇�) (𝜇(𝜃1)− �̃�)

⃒⃒
≤ 𝐶3|𝜇(𝜃1)− �̂�(𝑤𝑁)|

𝑝−→ 0,

where �̇� lies in the interval between 𝜇(𝜃1) and �̃�; the penultimate line uses that �̃� lies in the

interval between 𝜇(𝜃1) and �̂�(𝑤𝑁); and where the last line follows from theorem OA.1.1.

Applying theorem OA.1.1 again, we conclude that

(︀
𝜕2
2 𝑙 (𝜇(𝜃1), �̃�)− 𝜕2

2 𝑙 (𝜇(𝜃1), 𝜇(𝜃1))
)︀
𝑇 (𝜇(𝜃1)− �̂�(𝑤𝑁))

2 𝑝−→ 0. (OA.15)

Further, by applying lemma A.2.2 with 𝛿 > 2 and suitably modifying the proof of theorem

1 it may be seen that

sup
𝑁,𝑇>𝑇0

E
[︂⃒⃒⃒√

𝑇 (𝜇(𝜃1)− �̂�(𝑤𝑁))
⃒⃒⃒4]︂

< ∞.

Accordingly, the random variable in eq. (OA.15) is uniformly bounded in 𝐿4/3 (𝜂-a.s.) as

E
[︀
|
(︀
𝜕2
2 𝑙 (𝜇(𝜃1), �̃�)− 𝜕2

2 𝑙 (𝜇(𝜃1), 𝜇(𝜃1))
)︀
𝑇 (𝜇(𝜃1)− �̂�(𝑤𝑁))

2|4/3
]︀
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≤ sup
𝑁,𝑇>𝑇0

𝐶
4/3
3 E

[︂⃒⃒⃒√
𝑇 (𝜇(𝜃1)− �̂�(𝑤𝑁))

⃒⃒⃒4]︂
. (OA.16)

By the dominated convergence theorem and eqs. (OA.15)-(OA.16) it now follows that

E
[︀(︀
𝜕2
2 𝑙 (𝜇(𝜃1), �̃�)− 𝜕2

2 𝑙 (𝜇(𝜃1), 𝜇(𝜃1))
)︀
𝑇 (𝜇(𝜃1)− �̂�(𝑤𝑁))

2]︀→ 0 (OA.17)

Eq. (OA.11) now follows directly from eqs. (OA.14) and (OA.17).

The proof of theorem OA.2.2 on the local normality result of theorem OA.1.1. We

establish that the moments of the estimator converge to the moments of the limit distribution.

Proof of theorem OA.2.2. First, the MAD of the averaging estimator is finite since by

Hölder’s inequality it holds that

√
𝑇 E

[︁
|�̂�(𝑤𝑁)− 𝜇(𝜃1)|

]︁
≤
√︁

𝑇 × E
[︀
(�̂�(𝑤𝑁)− 𝜇(𝜃1))

2]︀ (OA.18)

≡
√︀

𝑇 ×𝑀𝑆𝐸 (�̂�(𝑤𝑁)).

The proof of theorem 1 establishes that it holds that

sup
𝑁,𝑇>𝑇0

𝑇 ×𝑀𝑆𝐸 (�̂�(𝑤𝑁)) < ∞. (OA.19)

(𝑖) follows.

Second, by theorem OA.1.1

√
𝑇 (�̂�(𝑤𝑁)− 𝜇(𝜃1)) ⇒ 𝑁

(︃
�̄�∑︁
𝑖=1

𝑤𝑖𝑑
′
0𝜂𝑖 − 𝑑′

0𝜂1,

�̄�∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0

)︃
. (OA.20)

The first absolute moment of the limiting random variable in eq. (OA.20) is given by

the right hand expression in eq. (OA.12) (Elandt, 1961). The first absolute moment of

√
𝑇 (�̂�(𝑤𝑁)− 𝜇(𝜃1)) is exactly 𝑇 1/2 ×𝑀𝐴𝐷(�̂�(𝑤𝑁)). This random variable is uniformly

bounded in 𝐿2 by eqs. (OA.18)-(OA.19). Accordingly, this first absolute moment (scaled
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MAD) converges to the first absolute moment of the limit by the dominated convergence

theorem from from eqs. (OA.18)-(OA.20).
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OA.3 Confidence Intervals with the Minimum MSE

Unit Averaging Estimator

Inference based on the minimum MSE estimator is challenging. A valid confidence interval

(CI) must account for the variability of the individual estimators, the variability in the

estimated weights, the bias of the averaging estimator, and the uncertainty about the bias.

In this section, we propose a practical simulation-based CI that tackles all four of the

above challenges. In order to motivate its construction, we first propose a valid two-step

asymptotic CI (subsection OA.3.1). This asymptotic CI may be challenging to compute

in practice. Accordingly, we propose a one-step simulation-based CI based on the same

principles as the asymptotic CI (subsection OA.3.2). This CI is straightforward to compute

and shows favorable coverage and length properties in a Monte Carlo study (see subsection

OA.4.4).

OA.3.1 Asymptotic Confidence Interval

To motivate the confidence intervals of algorithms 1-2, we first recall the result of theorem

OA.1.1. Let �̄� be a fixed positive integer, {𝑤𝑁} an �̄� -vector of weights that does depend

on data, and let (𝑤1𝑁 , . . . , 𝑤�̄�𝑁) → (𝑤1, . . . , 𝑤�̄�), where
∑︀�̄�

𝑖=1 𝑤𝑖 = 1 (we consider the

fixed-𝑁 case, the extension to the large-𝑁 case is immediate). Then the unit averaging

estimator satisfies

√
𝑇 (�̂�(𝑤𝑁)− 𝜇(𝜃1)) ⇒ 𝑁

(︃
�̄�∑︁
𝑖=1

𝑤𝑖𝑑
′
0(𝜂𝑖 − 𝜂1),

�̄�∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0

)︃
.

For clarity, we assume that 𝑑0 and {𝑉𝑖}�̄�𝑖=1 are known; these parameters can be consistently

estimated as in the main text.

If {𝜂𝑖}�̄�𝑖=1 were known, it would be possible to compute the true optimal weights

𝑤𝑜 := argmin
𝑤�̄�∈Δ�̄�

𝑤′Ψ�̄�𝑤, (OA.21)
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where Ψ�̄� is an �̄� × �̄� matrix with elements [Ψ�̄� ]𝑖 𝑖 = 𝑑′
0

(︀
(𝜂𝑖 − 𝜂1) (𝜂𝑖 − 𝜂1)

′ + 𝑉𝑖

)︀
𝑑0 and

[Ψ�̄� ]𝑖 𝑗 = 𝑑′
0(𝜂𝑖 − 𝜂1) (𝜂𝑗 − 𝜂1)

′ 𝑑0.

As the optimal weights 𝑤𝑜 do not depend on the observed sample, a valid (1−𝛼)×100%

asymptotic confidence interval for 𝜇(𝜃1) would then be given by

[︃
�̂�(𝑤𝑁)−

𝑧1−𝛼/2

√︁∑︀�̄�
𝑖=1 𝑤

2
𝑖𝑑

′
0𝑉𝑖𝑑0

√
𝑇

−
∑︀�̄�

𝑖=2 𝑤𝑖𝑑
′
0(𝜂𝑖 − 𝜂1)√
𝑇

,

�̂�(𝑤𝑁) +
𝑧1−𝛼/2

√︁∑︀�̄�
𝑖=1𝑤

2
𝑖𝑑

′
0𝑉𝑖𝑑0

√
𝑇

−
∑︀�̄�

𝑖=2𝑤𝑖𝑑
′
0(𝜂𝑖 − 𝜂1)√
𝑇

]︃
, (OA.22)

where 𝑧𝛼 is the 𝛼th quantile of the standard normal distribution.

The key obstacle to forming interval (OA.22) is the unavailability of consistent estimators

for 𝜂𝑖 in the local framework (see the discussion before lemma 2). There is non-diminishing

uncertainty around both the bias terms 𝑑0(𝜂𝑖 − 𝜂1) in (OA.22) and the optimal weights 𝑤𝑜.

Algorithm 1: Asymptotic (1− 𝛼− 𝛾)× 100% Confidence Interval for 𝜇(𝜃1)

1 Let 𝐿�̄�,𝑇 be an (1− 𝛾)× 100% asymptotic confidence set for

(𝑑′
0(𝜂2 − 𝜂1), . . . ,𝑑

′
0(𝜂�̄� − 𝜂1));

2 for each guess 𝐸𝜅 ∈ 𝐿�̄�,𝑇 do
3 Form the �̄� × �̄� matrix Ψ𝜅

�̄�
as [Ψ𝜅

�̄�
]1,1 = 𝑑′

0𝑉1𝑑0, [Ψ
𝜅
�̄�
]1 𝑖 = [Ψ𝜅

�̄�
]𝑖 1 = 0,

[Ψ𝜅
�̄�
]𝑖 𝑖 = (𝐸𝜅

𝑖 )
2 + 𝑑′

0𝑉𝑖𝑑0 and [Ψ𝜅
�̄�
]𝑖 𝑗 = 𝐸𝜅

𝑖 𝐸
𝜅
𝑗 for 𝑖, 𝑗 = 2, . . . , �̄� , 𝑖 ̸= 𝑗.

4 Define

𝑤𝐸𝜅
= argmin

𝑤�̄�∈Δ�̄�

𝑤�̄� ′
Ψ𝜅

�̄�𝑤�̄� .

5 Define

𝑚�̄�,𝑇 (𝐸
𝜅) = �̂�(𝑤𝐸𝜅

)−
𝑧1−𝛼/2

√︁∑︀�̄�
𝑖=1(𝑤

𝐸𝜅

𝑖 )2𝑑′
0𝑉𝑖𝑑0√

𝑇
−
∑︀�̄�

𝑖=2𝑤
𝐸𝜅

𝑖 𝐸𝜅
𝑖√

𝑇

𝑀�̄�,𝑇 (𝐸
𝜅) = �̂�(𝑤𝐸𝜅

) +
𝑧1−𝛼/2

√︁∑︀�̄�
𝑖=1(𝑤

𝐸𝜅

𝑖 )2𝑑′
0𝑉𝑖𝑑0√

𝑇
−
∑︀�̄�

𝑖=2𝑤
𝐸𝜅

𝑖 𝐸𝜅
𝑖√

𝑇
,

where 𝑧𝛼 is the 𝛼th quantile of the standard normal distribution.

6 end

7 Define

ℐ�̄�,𝑇 =

[︂
min

𝐸𝜅∈𝐿�̄�,𝑇

𝑚�̄�,𝑇 (𝐸
𝜅), max

𝐸𝜅∈𝐿�̄�,𝑇

𝑀�̄�,𝑇 (𝐸
𝜅)

]︂

To fully account for the above uncertainty, we propose a two-step interval ℐ�̄�,𝑇 , formally
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constructed in algorithm 1. First, we form a confidence region 𝐿�̄�,𝑇 that asymptotically

contains the true value {𝑑′
0(𝜂𝑖 − 𝜂1)}�̄�𝑖=1 with probability at least 1− 𝛾. Each point in 𝐿�̄�,𝑇

then forms a guess for the true bias parameters (𝑑′
0(𝜂2−𝜂1), . . . ,𝑑

′
0(𝜂�̄� −𝜂1))

′. Second, for

each candidate bias vector 𝐸𝜅 in 𝐿�̄�,𝑇 , we form the corresponding optimal weights (OA.21).

For these weights and the guess 𝐸𝜅 for the bias, we form an interval of the form (OA.22).

The overall CI ℐ�̄�,𝑇 is the union of such intervals for all of the values of 𝐸𝜅 considered.

A suitable asymptotic confidence region 𝐿�̄�,𝑇 for the bias parameters can be formed

using lemma 2. The lemma implies that

⎛⎜⎜⎜⎜⎜⎝
√
𝑇
(︁
𝜇
(︁
𝜃2

)︁
− 𝜇

(︁
𝜃1

)︁)︁
...

√
𝑇
(︁
𝜇
(︁
𝜃�̄�

)︁
− 𝜇

(︁
𝜃1

)︁)︁

⎞⎟⎟⎟⎟⎟⎠⇒

⎛⎜⎜⎜⎜⎜⎝
Λ2 − Λ1

...

Λ�̄� − Λ1

⎞⎟⎟⎟⎟⎟⎠ , (OA.23)

⎛⎜⎜⎜⎜⎜⎝
Λ2 − Λ1

...

Λ�̄� − Λ1

⎞⎟⎟⎟⎟⎟⎠ ∼ 𝑁

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
𝑑′
0(𝜂2 − 𝜂1)

...

𝑑′
0(𝜂�̄� − 𝜂1)

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
𝑑′
0(𝑉2 + 𝑉1)𝑑0 · · · 𝑑′

0𝑉1𝑑0

...
. . .

...

𝑑′
0𝑉1𝑑0 · · · 𝑑′

0(𝑉�̄� + 𝑉1)𝑑0

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠ .

𝐿�̄�,𝑇 may then be formed as the highest density region of Λ = (Λ2 − Λ1, . . . ,Λ�̄� − Λ1),

replacing 𝑑0 and 𝑉𝑖 with 𝑑1 and 𝑉𝑖 if necessary (see remark OA.3.1 below for an example

construction).

As the following theorem shows, the interval of algorithm 1 has correct coverage. The

proof of theorem OA.3.1 can be found in subsection OA.3.3.

Theorem OA.3.1. Let assumptions A.1-A.5 hold. Let interval ℐ�̄�,𝑇 be defined as in

algorithm 1. Then

lim inf
𝑇→∞

𝑃
(︀
𝜇(𝜃1) ∈ ℐ�̄�,𝑇

)︀
≥ 1− 𝛼− 𝛾.

Interval ℐ�̄�,𝑇 tackles all four challenges set out at the beginning of section OA.3. It

accounts for the variability of the individual estimators and the variability of the averaging

estimator due to sampling uncertainty. It does so by including a suitable asymptotic variance
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term in 𝑚�̄�,𝑇 and 𝑀�̄�,𝑇 (see alg. 1). The last term in 𝑚�̄�,𝑇 and 𝑀�̄�,𝑇 accounts for the bias

of the averaging estimator. Finally, searching through the confidence region 𝐿�̄�,𝑇 quantifies

the uncertainty in the bias parameters and the variability in the averaging weights due to

𝜂. The coverage guarantee of ℐ�̄�,𝑇 stems from the fact that 𝐿�̄�,𝑇 includes the true bias

vector with a high probability.

OA.3.2 One-Step Confidence Interval

In practice, it may be challenging to store 𝐿�̄�,𝑇 in the memory of a computer. If 𝐿�̄�,𝑇

is discretized into a grid of points, the number of potential candidate vectors 𝐸𝜅 scales

exponentially with �̄� .

To overcome this challenge, we propose a one-step interval, formally defined in algorithm

2. In it, we replace an asymptotic confidence set 𝐿�̄�,𝑇 with an approximation based on

bootstrapping the individual time series. Intuitively, we use each bootstrap sample directly

to form a possible guess 𝐸𝜅, instead of precomputing and storing the confidence region

𝐿�̄�,𝑇 . For each such bootstrap guess, we compute the corresponding averaging weights and

the debiased averaging estimator. The interval ℐ𝐵
�̄�,𝑇

is formed using the quantiles of the

bootstrap estimates. ℐ𝐵
�̄�,𝑇

captures both the variability of the estimator and the uncertainty

about its bias.

There are two key parallels between intervals ℐ𝐵
�̄�,𝑇

and ℐ�̄�,𝑇 . First, algorithm 2 implicitly

constructs a bootstrap version of 𝐿�̄�,𝑇 for 𝛾 = 0 as 𝐵 → ∞. Second, algorithm 2 quantifies

the variability of the averaging estimator by computing the bootstrap unit averaging

estimators �̂�(𝑏)(𝑤). Interval ℐ�̄�,𝑇 instead uses both the asymptotic distribution of �̂�(𝑤),

and the guesses in 𝐿�̄�,𝑇 .

Given the above parallels, the asymptotic validity of the one-step interval ℐ𝐵
�̄�,𝑇

follows

from the validity of the boostrap method applied to the individual time series and theorem

OA.3.1.

In the simulation study of subsection OA.4.4, we find that ℐ𝐵
�̄�,𝑇

enjoys favorable coverage
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Algorithm 2: One-step (1− 𝛼)× 100% Confidence Interval for 𝜇(𝜃1)

1 Draw 𝐵 bootstrap samples of the data, using the full cross-section and only resampling
the time dimension observations (e.g. using the stationary bootstrap (Politis and
Romano, 1994))

2 Set 𝑏 = 1 and while 𝑏 ≤ 𝐵 do

3 Run individual estimation on the 𝑏th bootstrap sample to obtain {𝜃(𝑏)
𝑖 }�̄�𝑖=1 and the

corresponding estimated variances {𝑉 (𝑏)
𝑖 }�̄�𝑖=1.

4 Set

𝑑
(𝑏)
1 := ∇𝜇(𝜃

(𝑏)
1 ).

5 Form the matrix Ψ̂
(𝑏)
𝑁 using {𝜃(𝑏)

𝑖 }�̄�𝑖=1, {𝑉
(𝑏)
𝑖 }�̄�𝑖=1, and 𝑑

(𝑏)
1 . according to the expression

after eq. (3) in the main text.

6 Compute the bootstrap minimum MSE averaging weights �̂�(𝑏) using Ψ̂
(𝑏)
𝑁 according to

eq. (4) in the main text.

7 Compute the debiased unit averaging estimator in the 𝑏th sample as

𝑚
(𝑏)

�̄�,𝑇
:= �̂�(𝑏)(�̂�(𝑏))−

∑︀�̄�
𝑖=2 �̂�

(𝑏)
𝑖 𝑑

(𝑏)
1 (𝜃

(𝑏)
𝑖 − 𝜃

(𝑏)
1 )√

𝑇
,

�̂�(𝑏)(𝑤) :=
�̄�∑︁
𝑖=1

𝑤𝑖𝜇(𝜃
(𝑏)
𝑖 ).

8 if 𝑏 < 𝐵 then
9 Set 𝑏 = 𝑏+ 1.

10 end

11 end

12 Define the one-step confidence interval ℐ𝐵
�̄�,𝑇

as

ℐ𝐵
�̄�,𝑇

:=
[︁
𝑞
(𝑏)

�̄�,𝑇
(𝛼/2), 𝑞

(𝑏)

�̄�,𝑇
(1− 𝛼/2)

]︁
,

where 𝑞
(𝑏)

�̄�,𝑇
(𝜏) be the 𝜏th quantile of 𝑚

(𝑏)

�̄�,𝑇
(across 𝑏).

and length properties. Compared to the CI based on the individual estimator only, ℐ𝐵
�̄�,𝑇

generally has the same coverage, but is somewhat shorter. This reduction in length is

stronger if the minimum MSE estimator is comparatively more efficient than the individual

estimator.

OA.3.3 Proof of Theorem OA.3.1

Proof of theorem OA.3.1. Let 𝐸𝑇𝑟𝑢𝑒 = (𝑑′
0(𝜂2−𝜂1), . . . ,𝑑

′
0(𝜂𝑁 −𝜂1)) be the true values of

the bias parameters, and let 𝑃0 be the probability when the true heterogeneity parameters

are [𝜂1,𝜂2, . . . ,𝜂�̄� ]. Define the event 𝐴�̄�,𝑇 = {𝜇(𝜃1) ∈ [𝑚�̄�,𝑇 (𝐸
𝑇𝑟𝑢𝑒),𝑀�̄�,𝑇 (𝐸

(𝑇𝑟𝑢𝑒))}.
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Observe that since {𝑉1, . . . ,𝑉�̄�} are the asymptotic variances of individual estimators under

𝑃0, it holds that 𝑃0(𝐴�̄�,𝑇 ) → 1− 𝛼.

Now also define the event that the true bias components are captured by the ellipse

𝐿�̄�,𝑇 : 𝐵�̄�,𝑇 = {𝐸𝑇𝑟𝑢𝑒 ∈ 𝐿�̄�,𝑇}. Then

lim inf
𝑇→∞

𝑃0(𝐴�̄�,𝑇 ) = lim inf
𝑇→∞

[︁
𝑃0(𝐴�̄�,𝑇 ∩𝐵�̄�,𝑇 ) + 𝑃0(𝐴�̄�,𝑇 ∩𝐵𝑐

�̄�,𝑇 )
]︁
= 1− 𝛼.

By definition of 𝐿�̄�,𝑇 , lim sup𝑇→∞ 𝑃0(𝐵
𝑐
�̄�,𝑇

) ≤ 𝛾, which implies that

lim inf
𝑇→∞

𝑃0(𝐴�̄�,𝑇 ∩𝐵�̄�,𝑇 ) ≥ 1− 𝛼− 𝛾. (OA.24)

When 𝐵�̄�,𝑇 holds, 𝐸𝑇𝑟𝑢𝑒 ∈ 𝐿�̄�,𝑇 . Thus 𝐸𝑇𝑟𝑢𝑒 is one of the values 𝐸𝜅 considered in the

second step, which implies that under the event 𝐵�̄�,𝑇

[𝑚(𝐸𝑇𝑟𝑢𝑒),𝑀(𝐸𝑇𝑟𝑢𝑒)] ⊂
[︂

min
𝐸𝜅∈𝐿�̄�,𝑇

𝑚�̄�,𝑇 (𝐸
𝜅), max

𝐸𝜅∈𝐿�̄�,𝑇

𝑀�̄�,𝑇 (𝐸
𝜅)

]︂
≡ ℐ�̄�,𝑇 . (OA.25)

Combining eqs. (OA.24) and (OA.25), we conclude that

lim inf
𝑇→∞

𝑃0

(︀{︀
𝜇(𝜃1) ∈ ℐ�̄�,𝑇

}︀
∩𝐵�̄�,𝑇

)︀
≥ 1− 𝛼− 𝛾.

Last, trivially it holds that 𝑃0

(︀{︀
𝜇(𝜃1) ∈ ℐ�̄�,𝑇

}︀)︀
≥ 𝑃0

(︀{︀
𝜇(𝜃1) ∈

{︀
𝜇(𝜃1) ∈ ℐ�̄�,𝑇

}︀}︀
∩𝐵�̄�,𝑇

)︀
,

which yields the desired statement about coverage of ℐ�̄�,𝑇 :

lim inf
𝑇→∞

𝑃0

(︀{︀
𝜇(𝜃1) ∈ ℐ�̄�,𝑇

}︀)︀
≥ 1− 𝛼− 𝛾.

Remark OA.3.1 (Forming 𝐿𝑁,𝑇 for �̄� = 2). The key ingredient of algorithm 1 is the

confidence region 𝐿�̄�,𝑇 . Such an region may be based on the convergence relation (OA.23).
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For example, if �̄� = 2, then

𝐿2,𝑇 =

[︃
√
𝑇
(︁
𝜇
(︁
𝜃2

)︁
− 𝜇

(︁
𝜃1

)︁)︁
− 𝑧1−𝛾/2

√︀
𝑑′
0(𝑉2 + 𝑉1)𝑑0,

√
𝑇
(︁
𝜇
(︁
𝜃2

)︁
− 𝜇

(︁
𝜃1

)︁)︁
− 𝑧𝛾/2

√︀
𝑑′
0(𝑉2 + 𝑉1)𝑑0

]︃

forms a suitable (1−𝛾)×100% asymptotic CI for 𝑑′
1(𝜂𝑖−𝜂1), where 𝑧𝜏 is the 𝜏th quantile of

the standard normal distribution. 𝑉1,𝑉2, and 𝑑0 may be replaced by consistent estimators.

This logic generalizes to higher dimensions.
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OA.4 Further Materials for the Simulation Study

In this section, we extend the analysis of the Monte Carlo study of section 4. First, we

consider two further focus parameters and an additional sample size 𝑇 = 180 for the

estimators of section 4 (subsection OA.4.1). Second, we analyze how the performance of

the large-𝑁 estimators depends on their tuning parameters (subsection OA.4.2). Third, we

study the weights generated by the minimum MSE estimator (subsection OA.4.3). Finally,

we analyze the coverage and length properties of the confidence interval of section OA.3.2

(subsection OA.4.4).

The overall practical conclusions are broadly in line with the results of sections 4-5.

In the absence of prior information, we recommend using the fixed-𝑁 or the top units

large-𝑁 estimator. Both offer gains in the MSE for all focus parameters almost everywhere

in the parameter space, without need for prior information. Furthermore, the top units

specification is generally insensitive to the number of top units, while the fixed-𝑁 estimator

has no tuning parameters. However, if prior information is available, using it can yield

stronger improvements in the MSE.

The design of the study is as in section 4, with three additions. First, we consider a new

intermediate value of 𝑇 = 180. This value lies between the moderate- and large-𝑇 settings,

with an average 𝑡-statistics of 5 (see remark 1). Second, we consider two additional focus

parameters — the coefficient 𝛽1 and the MSE-optimal forecast for 𝑦1𝑇+1 given 𝑥1𝑇+1 = 1 and

𝑦1𝑇 — the conditional expectation E[𝑦1𝑇+1|𝑦1𝑇 , 𝑥1𝑇+1 = 1] = 𝜆1𝑦1𝑇 + 𝛽1. We evaluate the

performance of the averaging estimators for the same grid of values of 𝜆1 as in the main text.

Note that both new focus parameters are sample-dependent, even for a given value of 𝜆1. The

key measure of interest — the MSE of the form E [(�̂�(𝑤)− 𝜇(𝜃1))
2|𝜆1 = 𝑐] , 𝜆1 ∈ [0.2, 0.8] —

averages over the distributions of these focus parameters. Third and last, we consider an

additional “coefficient pre-clustering” data-driven large-𝑁 specification. For this approach,

we first cluster the individual estimates into 𝑘 clusters using 𝑘-means. The units allocated

to the cluster of the target unit are left unrestricted.
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OA.4.1 MSE for All Sample Sizes and Focus Parameters

In this section, we report the results of estimating all three focus parameters (𝜆1, 𝛽1, the

optimal forecast E [𝑦1𝑇+1|𝑦1𝑇 , 𝑥1𝑇+1]) using the estimators considered in section 4. We also

use the pre-clustering large-𝑁 estimator defined above with 𝑘 = 4 coefficient clusters. The

results are visually presented on figs. OA.1-OA.5. On figs. OA.1-OA.3, we plot the MSE of

each averaging approach relative to the MSE of the individual estimators. Additionally,

figs. OA.4-OA.5 depict the bias and the relative variance of the averaging estimators for

𝜇(𝜃1) = 𝜆1 for all values of (𝑁, 𝑇 ) considered. Note that in this case the focus parameter is

held fixed for each given value of 𝜆1, permitting the bias and the variance to be computed.

A common pattern in figs. OA.1-OA.5 is that the fixed-𝑁 , the associated top units

large-𝑁 , and the “most similar” large-𝑁 estimators offer gains in the MSE for (almost) all

values of 𝜆1 considered. The results for these estimators align with those in the main text,

to which we refer for discussion.

The other estimators generally perform worse for at least one parameter for a non-trivial

share of 𝜆1. For example, pre-clustering coefficients performs favorably for estimating 𝜆1,

but does not improve forecasting or estimation of 𝛽1 relative to the individual estimator (fig.

OA.3), paralleling the results of the empirical application (see section OA.5). The mean

group and the AIC-weighted estimators for 𝛽1 and the forecast perform worse than the

individual estimator by an order of magnitude, and thus are not reported on the figures.

There are several other features of interest in the results. First, the gains in the MSE for

𝑇 = 180 are stronger than for 𝑇 = 600 and weaker than for 𝑇 = 60, as expected. Second,

recall that 𝛽1 and 𝜆1 are independent. Consequently, the reported MSE for 𝛽1 and the

forecast averages over the unconditional distribution of 𝛽1. Third, the MSE for 𝛽1 and the

forecast depends on the value of 𝜆1 through the value of the focus parameter (the forecast

only) and the statistical properties of the individual estimator of unit 1. The dependence on

𝜆1 is somewhat complex for the forecast, as 𝜆1 affects both the actual value of the forecast

and the distribution of 𝑦1𝑇 .
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Figure OA.1: MSE of unit averaging estimators relative to the individual estimator. Focus
parameter 𝜇(𝜃1) = 𝜆1. Note: part of this figure is reported as fig. 1 in the main text.
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Figure OA.2: MSE of unit averaging estimators relative to the individual estimator. Focus
parameter 𝜇(𝜃1) = 𝛽1. Note: mean group and AIC estimators have MSE>1.5, and are not
captured by the plot.
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Figure OA.3: MSE of unit averaging estimators relative to the individual estimator. Focus
parameter 𝜇(𝜃1) = E[𝑦1𝑇+1|𝑦1𝑇 , 𝑥1𝑇+1 = 1] (MSE-optimal forecast for 𝑦1𝑇+1). Note: mean
group and AIC estimators have MSE>1.5, and are not captured by the plot.
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Figure OA.4: Bias of unit averaging estimators. Focus parameter 𝜇(𝜃1) = 𝜆1. Note: part of
this figure is reported as fig. 2 in the main text.
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Figure OA.5: Variance of unit averaging estimators relative to the individual estimator.
Focus parameter 𝜇(𝜃1) = 𝜆1. Note: part of this figure is reported as fig. 2 in the main text.
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OA.4.2 Choice of Unrestricted Units

The set of unrestricted units acts as a tuning parameter for the large-𝑁 estimator. In

this section, we examine how the choice of this set affects the performance of the large-

𝑁 estimators of section 4, along with the pre-clustering large-𝑁 specification. For the

estimators considered, the set of unrestricted units is fully determined by a scalar parameter

(except for the Stein-like estimator that has no tuning parameters). Specifically,

∙ For the “most similar” estimator, the scalar parameter is the number 𝑘 of units whose

parameter vector 𝜃𝑖 is closest to the parameter vector 𝜃1 of the target unit. We

consider five specifications for 𝑘, two of which are independent of 𝑁 (𝑘 = 10, 25) and

three that depend on 𝑁 (𝑘 = 0.1𝑁, 0.25𝑁 and 0.5𝑁).

∙ For the top units specification, the parameter is the number 𝑘 of the units with the

largest fixed-𝑁 weights. We consider the same values of 𝑘 as for the “most similar”

estimator: 𝑘 = 10, 25, 0.1𝑁, 0.25𝑁, 0.5𝑁 .

∙ For the pre-clustering, the parameter is the number 𝑘 of coefficient clusters. We

consider 𝑘 = 2, 4, and 8 clusters.

Figs. OA.6-OA.14 report the MSE, bias, and variance for the specifications considered. We

report the results only for 𝜇(𝜃1) = 𝜆1, as the ranking of the estimators is identical for the

other two focus parameters.

As in the main text, the flexibility of the estimator controls a trade-off between stronger

improvements for units close to the mean E[𝜆1] = 0.5 versus a stronger improvements for less

typical units. The trade-off appears for all of the estimators, though it is less pronounced

for the top units estimator (fig. OA.9). This trade-off is not identical to the bias-variance

trade-off. More flexible estimators have uniformly lower bias (figs. OA.7, OA.10, OA.13).

However, there is no uniform domination in terms of the variance: more flexible estimators

have lower variance for more extreme values of 𝜆1; less flexible estimators have lower variance

for 𝜆1 closer to the E[𝜆1].

The performance of the top units estimator only weakly depends on the number of the
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top units chosen. The MSE profile of the estimator is close to that of the fixed-𝑁 estimator,

although it is also somewhat affected by trade-off described above.

In contrast, the MSE profile of the “most similar” and the pre-clustering estimators

varies more strongly with their tuning parameters. The variation follows the above trade-off

as well, and no specification dominates any other. However, all the specifications yield an

improvement over the unit-specific estimator, provided the cross-section is large enough

(except potentially for 𝜆1 ≈ 0.8, see the discussion in the main text).
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Figure OA.6: Relative MSE of large-𝑁 averaging estimators using coefficient similarity
information. Focus parameter 𝜇(𝜃1) = 𝜆1. * – specification reported in the main text.
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Figure OA.7: Bias of large-𝑁 averaging estimators using coefficient similarity information.
Focus parameter 𝜇(𝜃1) = 𝜆1. * – specification reported in the main text.
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Figure OA.8: Relative variance of large-𝑁 averaging estimators using coefficient similarity
information. Focus parameter 𝜇(𝜃1) = 𝜆1. * – specification reported in the main text.
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Figure OA.9: MSE of top unit large-𝑁 averaging estimators relative to the individual
estimator. Focus parameter 𝜇(𝜃1) = 𝜆1. * – specification reported in the main text.
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Figure OA.10: Bias of top unit large-𝑁 averaging estimators. Focus parameter 𝜇(𝜃1) = 𝜆1.
* – specification reported in the main text.
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Figure OA.11: Relative variance of top unit large-𝑁 averaging estimators relative to the
individual estimator. Focus parameter 𝜇(𝜃1) = 𝜆1. * – specification reported in the main
text.
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Figure OA.12: MSE of large-𝑁 averaging estimators with coefficient clustering relative to
the individual estimator. Focus parameter 𝜇(𝜃1) = 𝜆1.
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Figure OA.13: Bias of large-𝑁 averaging estimators with coefficient clustering. Focus
parameter 𝜇(𝜃1) = 𝜆1.
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Figure OA.14: Relative variance of large-𝑁 averaging estimators with coefficient clustering
relative to the individual estimator. Focus parameter 𝜇(𝜃1) = 𝜆1.
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OA.4.3 Optimal Weights and Unrestricted Units

We now take a deeper look at the weights and the unrestricted unit chosen by the minimum

MSE estimators of this simulation study. Specifically, we consider:

(i) The weight assigned to the target unit. On figs. OA.15-OA.17, we plot the average

weight assigned to unit 1 for all of the focus parameters considered (𝜆1, 𝛽1, and the

optimal forecast E[𝑦1𝑇+1|𝑦1𝑇 , 𝑥1𝑇+1 = 1]). Note that fig. OA.15 expands on fig. 3 in

the main text.

(ii) The weights assigned to non-target units, as a function of their own parameter value

and the value of the target parameter. On figs. OA.18-OA.21, we report the expected

weight assigned to a unit with parameter 𝜆𝑎𝑙𝑡 when the focus parameter is 𝜆1, for all

possible values of (𝜆1, 𝜆𝑎𝑙𝑡).

(iii) The probability of a non-target unit being unrestricted, as a function of their own

parameter value and the value of the target parameter. This probability is reported

on figs. OA.22-OA.24 for the large-𝑁 estimators of subsection OA.4.1.

(iv) The average maximum difference between the weights of restricted units for several

large-𝑁 estimators vs. the weights assigned to those units by the fixed-𝑁 estimator

(fig. OA.25).

(v) The average difference in total mass assigned to the restricted set by several large-𝑁

estimators vs. the total mass assigned to those units by the fixed-𝑁 estimator (fig.

OA.26).

Our key result is that the minimum MSE estimator is responsive to the target value in the

following three senses. First, the estimator assigns larger weights to units with more similar

values of the target parameter, regardless of the weighting scheme (figs. OA.18-OA.21).

Second, the estimator detects whether the target unit is close to the mean or closer to

the boundaries (figs. OA.15, OA.22-OA.24). In the former case, it assigns less weight to

the target unit. Instead, it places more mass on the restricted set, which estimates the

expected value of the target parameter with greater precision. In the latter case, more
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weight is assigned to the individual-specific estimator of the target unit. Third, the large-𝑁

estimators with data-driven unrestricted unit sets (top units and pre-clustering) select units

with similar values of the target parameter into the unrestricted set (figs. OA.25-OA.26).

The flexibility of the estimator significantly influences the dispersion of the weights.

More flexible estimators spread the weights more widely across non-target units, as can be

seen by contrasting the weights of the fixed-𝑁 estimator (fig. OA.18) with the weights of

the “most similar” large-𝑁 estimator (fig. OA.19). More flexible estimators also place less

weight on the target unit for all focus parameters and sample sizes (OA.15-OA.17).

The value of 𝜆1 is another key driver of the weights and the unrestricted units. For

𝜆1 close to E[𝜆1] = 0.5, all of the weighting schemes spread their weights more widely

and assign lower weights to each given unit (figs. OA.18-OA.21). Two factors drive this

effect. First, there are generally more units with 𝜆𝑖 close to E[𝜆𝑖] under the DGP. Spreading

the unrestricted weights across such units permits a greater reduction in variance without

any increase in bias. Second, the restricted component, if present, estimates E[𝜆1] with

high precision (recall that the restricted units are assigned equal weights, see section 2).

Accordingly the estimators also place a larger mass on the restricted set in this region (fig.

OA.26). In contrast, if 𝜆1 is more extreme, units with similar 𝜆𝑖 are relatively scarce. In

this case, similar units receive relatively higher weights, more weight is assigned to the

individual estimator of unit 1, and less weight is given to the restricted set.

Finally, the two data-driven large-𝑁 procedures (top units and pre-clustering) select

similar weights, but differ somewhat in their unrestricted sets (figs. OA.20-OA.21, OA.23-

OA.24). The difference arises for 𝜆1 close to E[𝜆1]. For these values, each individual unit

has a notably lower probability of being unrestricted for the top units estimator than for

the pre-clustering estimator. This effect is driven by the fixed size of the unrestricted size

of the top units estimator (10% of 𝑁) and the greater abundance of units with 𝜆𝑖 close

to E[𝜆𝑖]. In contrast, the unrestricted set of the pre-clustered estimator does not have a

limited size, and so it consistently includes all units within a given distance of 𝜆1.
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Figure OA.15: Average weight of target unit (unit 1). Focus parameter 𝜇(𝜃1) = 𝜆1. Note:
part of this figure is reported as fig. OA.15 in the main text.
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Figure OA.16: Average weight of target unit (unit 1). Focus parameter 𝜇(𝜃1) = 𝛽1.
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Figure OA.17: Average weight of target unit (unit 1). Focus parameter 𝜇(𝜃1) =
E[𝑦1𝑇+1|𝑦1𝑇 , 𝑥1𝑇+1 = 1].
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Figure OA.18: Average weight of a unit with 𝜆𝑖 = 𝜆𝑎𝑙𝑡 for estimating 𝜇(𝜃1) = 𝜆1. Fixed-𝑁
estimator.
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Figure OA.19: Average weight of a unit with 𝜆𝑖 = 𝜆𝑎𝑙𝑡 for estimating 𝜇(𝜃1) = 𝜆1. Large-𝑁
estimator (10% most similar units are unrestricted)
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Figure OA.20: Average weight of a unit with 𝜆𝑖 = 𝜆𝑎𝑙𝑡 for estimating 𝜇(𝜃1) = 𝜆1. Large-𝑁
estimator (10% units with largest fixed-𝑁 weights are unrestricted).
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Figure OA.21: Average weight of a unit with 𝜆𝑖 = 𝜆𝑎𝑙𝑡 for estimating 𝜇(𝜃1) = 𝜆1. Large-𝑁
estimator (estimated coefficients are preclustered in 4 clusters; units in the same cluster as
the target unit are the unrestricted units).
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Figure OA.22: Probability of a unit with 𝜆𝑖 = 𝜆𝑎𝑙𝑡 being unrestricted for estimating
𝜇(𝜃1) = 𝜆1. Large-𝑁 estimator (10% most similar units are unrestricted).
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Figure OA.23: Probability of a unit with 𝜆𝑖 = 𝜆𝑎𝑙𝑡 being unrestricted for estimating
𝜇(𝜃1) = 𝜆1. Large-𝑁 estimator (10% units with largest fixed-𝑁 weights are unrestricted).
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Figure OA.24: Probability of a unit with 𝜆𝑖 = 𝜆𝑎𝑙𝑡 being unrestricted for estimating
𝜇(𝜃1) = 𝜆1. Large-𝑁 estimator (estimated coefficients are preclustered in 4 clusters; units
in the same cluster as the target unit are the unrestricted units).
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Figure OA.25: Average maximum difference between the weights of restricted units for
several large-𝑁 estimators vs. the weights assigned to those units by the fixed-𝑁 estimators.
Estimators of section 4.
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Figure OA.26: Average difference in total mass assigned to the restricted set by several
large-𝑁 estimators vs. the total mass assigned to those units by the fixed-𝑁 estimator.
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OA.4.4 Confidence Interval Coverage and Length

We now turn to the coverage and length properties of the one-step confidence interval ℐ𝐵
�̄�,𝑇

for the focus parameter (subsection OA.3.2). We consider 5 equally spaced values for the

parameter 𝜆1 ∈ {0.2, 0.35, 0.5, 0.65, 0.8}. The sample sizes considered are 𝑁 = 50, 150 and

𝑇 = 60, 180. For each value of 𝜆1 and each pair (𝑁, 𝑇 ), we draw 500 Monte Carlo samples.

The focus parameters are 𝜆1, 𝛽1, and E[𝑦1𝑇+1|𝑦1𝑇 , 𝑥1𝑇+1 = 1]. In each sample, we compute

ℐ𝐵
�̄�,𝑇

for each focus parameter, drawing 𝐵 = 500 bootstrap samples. The bootstrap samples

themselves are drawn using the stationary bootstrap (Politis and Romano, 1994) with

expected block size ⌊𝑇 1/3⌋. The target coverage level is 95%. For comparison, we also

compute a 95% bootstrap confidence interval based on the individual estimator of unit 1

only, using the same bootstrap samples. The results are reported in tables OA.1-OA.3.

We find that ℐ𝐵
�̄�,𝑇

compares favorably with the CI based on the individual estimator. In

terms of coverage, ℐ𝐵
�̄�,𝑇

generally matches the performance of the individual-only confidence

interval. The overage rates are close to nominal for all parameters, with some minor

distortions for 𝜇(𝜃1) = 𝜆1 for large values of 𝜆1. At the same time, the interval ℐ𝐵
�̄�,𝑇

is

slightly shorter without loss of coverage. The reduction in length is more pronounced for

𝜆1 = 0.2 𝜆1 = 0.35 𝜆1 = 0.5 𝜆1 = 0.65 𝜆1 = 0.8

𝑁 𝑇 Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Coverage

50
60 0.90 0.91 0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.87

180 0.93 0.93 0.93 0.93 0.92 0.92 0.93 0.93 0.92 0.91

150
60 0.93 0.93 0.93 0.93 0.91 0.91 0.91 0.91 0.91 0.89

180 0.95 0.96 0.94 0.94 0.94 0.94 0.94 0.93 0.93 0.92

Length

50
60 0.28 0.27 0.27 0.26 0.25 0.25 0.22 0.21 0.18 0.17

180 0.17 0.16 0.16 0.15 0.15 0.15 0.13 0.13 0.11 0.10

150
60 0.29 0.27 0.27 0.27 0.26 0.25 0.23 0.23 0.19 0.18

180 0.17 0.16 0.16 0.16 0.15 0.15 0.13 0.13 0.11 0.10

Table OA.1: Coverage and length of the one-step confidence interval based on the fixed-N
estimator (ℐ𝐵

�̄�,𝑇
) and the bootstrap confidence interval based on the individual estimator of

the target unit (Ind). Focus parameter: 𝜇(𝜃1) = 𝜆1
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𝜆1 = 0.2 𝜆1 = 0.35 𝜆1 = 0.5 𝜆1 = 0.65 𝜆1 = 0.8

𝑁 𝑇 Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Coverage

50
60 0.93 0.93 0.91 0.92 0.93 0.93 0.91 0.91 0.92 0.93

180 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.93 0.93 0.93

150
60 0.93 0.93 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93

180 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

Length

50
60 0.43 0.42 0.43 0.43 0.43 0.42 0.43 0.43 0.43 0.43

180 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

150
60 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43

180 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Table OA.2: Coverage and length of the one-step confidence interval based on the fixed-N
estimator (ℐ𝐵

�̄�,𝑇
) and the bootstrap confidence interval based on the individual estimator of

the target unit (Ind). Focus parameter: 𝜇(𝜃1) = 𝛽1

𝜆1 = 0.2 𝜆1 = 0.35 𝜆1 = 0.5 𝜆1 = 0.65 𝜆1 = 0.8

𝑁 𝑇 Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Ind ℐ𝐵
�̄�,𝑇

Coverage

50
60 0.95 0.96 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94

180 0.94 0.94 0.94 0.94 0.95 0.94 0.95 0.95 0.94 0.94

150
60 0.94 0.94 0.92 0.92 0.91 0.91 0.91 0.91 0.91 0.91

180 0.93 0.93 0.94 0.94 0.96 0.96 0.95 0.95 0.95 0.95

Length

50
60 1.47 1.48 2.42 2.42 3.59 3.59 5.15 5.14 7.44 7.42

180 1.34 1.35 2.34 2.35 3.59 3.59 5.23 5.23 8.01 8.00

150
60 1.44 1.44 2.32 2.32 3.43 3.43 4.89 4.88 7.12 7.11

180 1.30 1.30 2.24 2.24 3.42 3.42 4.98 4.98 7.61 7.60

Table OA.3: Coverage and length of the one-step confidence interval based on the fixed-N
estimator (ℐ𝐵

�̄�,𝑇
) and the bootstrap confidence interval based on the individual estimator

of the target unit (Ind). Focus parameter: 𝜇(𝜃1) = E[𝑦1𝑇+1|𝑦1𝑇 , 𝑥1𝑇+1 = 1]. Note: the
estimated depends on 𝑇 and thus length properties not directly comparable across 𝑇

points where the fixed-𝑁 minimum MSE estimator is relatively more efficient (see also the

the results of subsection OA.4.1).
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OA.5 Further Materials for the Empirical Application

Here we present further estimation results for our empirical application to forecasting

regional unemployment for a panel of German labor market districts. The setting is as in

section 5, to which we refer for details. In subsection OA.5.1, we provide estimation results

that expand on the results in section 5. In subsection OA.5.2, we examine the weights

chosen by our minimum MSE estimator.

OA.5.1 Full Estimation Results

In this section, we present the full results for the MSE of the averaging estimators considered

in section 5. We also consider a coefficient pre-clustering large-𝑁 specification. For this

approach, we first cluster the coefficient individual estimates into 𝑘 clusters using 𝑘-means.

The units allocated to the cluster of the target unit are left unrestricted (see also p. OA-30).

Further, we consider the impact of the tuning parameters of the two data-driven large-𝑁

specifications (top units and pre-clustering).

Our results are visually presented on figs. OA.27-OA.28. First, fig. OA.27 plots the

geographical distribution of the MSE for all of the approaches and rolling window sizes

considered in the main text. Second, figs. OA.28-OA.29 expand on figs. 4 and 6 in the

main text by also considering the pre-clustering large-𝑁 estimator. Fig. OA.28 provides a

box plot for the MSE for all averaging approaches relative to the MSE of the individual

estimator. For the data-driven large-𝑁 specifications, this figure plots the results for a range

of tuning parameter values. Fig. OA.29 depicts the best-performing approach for each labor

market district (AAB). In contrast to fig. 6, it includes the pre-clustering large-𝑁 estimator,

but drops the Stein-like one for readability. This change does not affect the rankings, as the

Stein-like estimator is best only for the same two districts as on fig. 6.

The results presented in this sections are fully in line with the results of section 5, to

which we refer for a full discussion. Accordingly, here we limit ourselves to discussing two

aspects of the results which do not appear in section 4. First, we find that the choice
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of the tuning parameter has a fairly minor impact on the performance of the top units

and the pre-clustering large-𝑁 estimators. As fig. OA.28 shows, all of the specifications

considered have broadly similar MSE profiles, although less flexible specifications (top 10%

and 8 clusters) generally have more favorable worst-case performance. Second, the top

units large-𝑁 estimator appears to be somewhat better than the pre-clustering specification,

in line with the simulation results (section OA.4.1). Although the two approaches do not

dominate each other, figs. OA.28-OA.29 show that the top units estimator has a more

favorable MSE distribution and performs better for a larger number of labor market districts

(AABs).

OA.5.2 Optimal Weights

We turn to the weights chosen by the minimum MSE estimators in the empirical application.

Specifically, we consider:

∙ The weight assigned to the target AAB. Fig. OA.30 plots the average weight each

AAB receives when it is the target unit, split by the estimator and the rolling window

sizes.

∙ The average maximum difference between the weights of restricted units for the top

units and pre-clustering large-𝑁 estimators vs. the weights assigned to those units

by the fixed-𝑁 estimator. These results are plotted geographically for all AABs and

rolling window sizes (figs. OA.31-OA.32).

∙ The average difference in total mass assigned to the restricted set by the large-𝑁

estimators vs. the mass assigned to those units by the fixed-𝑁 estimator (fig. OA.33).

We have also computed full geographic weight distributions for each AAB. The full set of

maps (one per AAB, averaging approach, and rolling window size) is available on request.

Together, figures OA.30-OA.33 reveal two divides in the allocation of weights – a

north-south and a urban-less urban one. Generally, AABs in southern regions (primarily

Bavaria, Baden-Württemberg, and Hesse) and less urban AABs have considerably lower
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Figure OA.27: Geographic distribution of MSE relative to the individual estimator. Thin
lines denote borders of labor market districts (AABs). Unit averaging approaches considered
in the main text.
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Figure OA.28: Distribution of relative MSEs across labor market districts (AABs). Split by
different averaging strategies and estimation window size. Large-𝑁 (top 𝑥%) – top units
large-𝑁 specification; Large-𝑁 (𝑘 clusters) – pre-clustering specification with 𝑘 clusters.
Whiskers – 10th and 90th percentiles; box boundaries – 25th and 75th percentiles; box
crossbar – median. Note: the large-𝑁 (10%) specification is labeled “large-𝑁 (top units)”
on fig. 4 in the main text

Figure OA.29: Best averaging approach for every labor market district (AAB), including
the pre-clustering large-𝑁 estimator. Thin lines denote borders of AABs.

own weights, as fig. OA.30 shows. Further, there is a wider difference between the weights

of the restricted units and the weights assigned to those units by the fixed-𝑁 estimators

(though the difference is at most 0.025, as figs. OA.31-OA.32 show). The total mass of the

restricted set is also higher for southern AABs (compared to the mass allocated to those

units by the fixed-𝑁 estimator; fig. OA.33). The opposite pattern obtains for the northern
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regions and for more urban AABs.

The results of section OA.4.3 suggest a possible explanation for the divide. In our

simulations results, units that lie closer to the mean of the focus parameter distribution have

lower own weight, higher mass assigned to the restricted set, and larger maximal difference

between the fixed-𝑁 and the large-𝑁 weights. A similar pattern hold for southern and

non-urban AABs. Accordingly, these AABs may be interpreted as being “typical” in the

sense of lying closer to the mean of the focus parameter distribution. In contrast, more

urban AABs (Berlin, Munich, AABs in the Rhine-Ruhr region, etc.) and northern AABs

may be viewed as being less similar to the average labor market district.

In other aspects, the results presented here agree with the simulation results. In

particular, as fig. OA.30 shows, more flexible estimators generally place lower weights on

the target unit for all regions and estimation window sizes. The same pattern appears in

our simulation results.
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Figure OA.30: Average weight each AAB receives when it is the target unit. Split by
estimator, AAB, and estimation window.
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Figure OA.31: Average maximum difference between the weights of the restricted units
for the top units large-𝑁 estimator vs. the weights assigned to those units by the fixed-𝑁
estimator (for each AAB).

Figure OA.32: Average maximum difference between the weights of the restricted units for
the pre-clustering large-𝑁 estimator vs. the weights assigned to those units by the fixed-𝑁
estimator (for each AAB).
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Figure OA.33: Average difference in mass assigned to the restricted set by the top units
large-𝑁 estimator vs. the mass assigned to those units by the fixed-𝑁 estimator (for each
AAB).
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OA.6 Unit Averaging for GDP Nowcasting

OA.6.1 Setting and Methodology

In this section, we provide an additional application of our methodology to nowcasting

quarterly GDP for a panel of European countries. GDP prediction provides another

natural application of our unit averaging methodology. There is evidence of considerable

heterogeneity between countries, yet at the same time pooling the data at least partially

improves prediction accuracy (Garcia-Ferrer, Highfield, Palm, and Zellner, 1987; Hoogstrate,

Palm, and Pfann, 2000; Marcellino, Stock, and Watson, 2003). The design of our application

follows standard practices in the nowcasting literature (Marcellino and Schumacher, 2010;

Schumacher, 2016). The literature on nowcasting is vast and we do not to cover it here. We

refer to Bańbura, Giannone, Modugno, and Reichlin (2013) for a survey.

We use quarterly GDP data from 1995Q1 to 2019Q4 for 12 European countries: the

11 founding Eurozone economies and the UK. We enrich our dataset with a set of 162

monthly GDP predictors for each country. The set of predictors include both real, price,

and survey data. Table OA.1 in the online appendix contains the complete list of variables

and descriptions. All non-survey data is available from Eurostat whereas the survey data is

available from the DG ECFIN. We use final data releases incorporating all revisions, making

our study a pseudo-real time one.

Our empirical design takes into account both the delays in publication of monthly

data (“ragged-edge problem”) and the impact of timing on the information set available

(“vintages” of data). First, the predictor variables are typically released with different delays

after the end of the corresponding month, which is known as the “ragged-edge” problem

(Wallis, 1986).1 We adopt a stylized release calendar of bimonthly releases to account for this

(table OA.1 in the online appendix lists the release delay for all variables). Second, as the

quarter goes by, more data becomes available.2 Each possible position in time determines

1For example, industrial production data is released 6 weeks after the end of the month, while survey
data is released at the end of the month without delay.

2For example, nowcasting Q4 GDP can be done at any moment between October 1 when no data on Q4

OA-72



a data “vintage”. We assume that a month has 4 weeks; in accordance with our release

calendar, we nowcast 6 weeks into the quarter (−6 weeks relative to quarter end), at quarter

end (0 weeks), and +4 weeks after the end of the quarter (GDP is released at +6 weeks).

Formally, let 𝑡 index months. Then 𝑣 = −3/2, 0, 1 is a fractional value that describes the

monthly position (or vintage) relative to the end of the quarter.

We nowcast GDP in quarter 3𝑡 using all information available at time 3𝑡+ 𝑣, separately

for each value of 𝑣 ∈ {−3/2, 0,+1}. As we have a large number of predictors available at

monthly frequency, we opt for factor unrestricted MIDAS (U-MIDAS) (Foroni, Marcellino,

and Schumacher, 2015). Given 𝑣, for each country we estimate monthly factors 𝑓𝑖 𝑡 with 𝑓𝑖 𝑡|𝑣

for all 𝑡 = 1, . . . , ⌊𝑇 + 𝑣⌋ using the full dataset available at 𝑇 + 𝑣.3 The GDP is modeled as

𝑦𝑖 3𝑡 = 𝛼𝑖|𝑣 +
11∑︁
𝑘=0

𝛽𝑖 𝑘|𝑣𝑓𝑖 ⌊3𝑡+𝑣−𝑘⌋|𝑣 + 𝜆𝑖|𝑣𝑦𝑖 3(𝑡−1) + 𝜀𝑖 3𝑡|𝑣,

where 𝑦𝑖 3𝑡 is GDP of country 𝑖 in quarter 3𝑡 and 𝜀𝑖 3𝑡|𝑣 is the prediction error. The country

factors estimates 𝑓𝑖 𝑡|𝑣 are extracted from the large set of predictor variables using the

EM-PCA method (Stock and Watson, 1999). We use only one factor for prediction following

Marcellino and Schumacher (2010) and we include the lag of GDP following Clements

and Galvão (2008). We nowcast GDP for each country using the conditional mean of

GDP implied by the U-MIDAS specification. Parameter estimation is carried out using a

rolling-windows of sizes 44, 60 and 76 quarters.4 Factors are also re-estimated every two

weeks using the all the data available at each point in time.

We estimate the conditional mean using only the fixed-𝑁 minimum MSE unit averaging

estimator, since cross-sectional dimension is not large and each unit is potentially relevant.

The performance of our minimum MSE unit averaging estimator is benchmarked against

the individual, mean group, and averaging estimators using AIC/BIC weights.

is available yet up to the middle of the following February, when GDP data for Q4 is released. The amount
of data available increases monotonically between these two dates.

3For example, suppose we wish to nowcast Q4 GDP. If 𝑣 = 1, we estimate factors up to January of the
following year using information available at the end of January. If 𝑣 = 1/2, we estimate factors up to
December using all the information available in the middle of January.

4Forecast evaluation begins in 2006Q1 for window size 44, 2010Q1 for T=60 and 2014Q1 for T=76.
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OA.6.2 Results

In table OA.4 we provide a summary of forecasting performance results for GDP nowcasting.

The table reports the MSE of the individual estimator as well as the MSE relative to the

individual estimator for all other strategies. The table reports results for the five largest

economies in our sample along with the GDP-weighted mean.5

−6 weeks 0 weeks +4 weeks
Averaging 44q 60q 76q 44q 60q 76q 44q 60q 76q

Mean Individual 1.113 0.986 1.167 0.973 1.010 1.196 0.933 0.914 1.124
minMSE 0.916 0.936 0.907 0.889 0.936 0.910 0.881 0.928 0.901
AIC 0.933 0.962 0.980 0.908 0.960 0.974 0.878 0.949 0.955
Mean group 1.417 1.570 1.524 1.635 1.696 1.505 1.879 1.704 1.489

DE Individual 0.661 0.546 0.537 0.509 0.421 0.434 0.565 0.449 0.456
minMSE 0.793* 0.822 0.815 0.787* 0.818 0.775 0.821* 0.809 0.794
AIC 0.963* 0.977* 0.989 0.974 0.982* 0.973 0.978 0.989* 0.978
Mean group 0.987 0.937 0.773 1.069 1.157 0.742 0.957 1.153 0.849

FR Individual 0.194 0.154 0.129 0.143 0.100 0.086 0.155 0.121 0.098
minMSE 0.988 1.067 1.037 0.971 1.059 1.159 0.916 0.978 1.069
AIC 0.883* 0.934 0.975 0.833* 0.978 1.049 0.828* 0.935* 0.999
Mean group 2.125* 2.068* 1.348 2.736* 2.942* 2.169* 2.473* 2.652* 2.156*

IT Individual 0.591 0.253 0.156 0.279 0.178 0.116 0.232 0.131 0.082
minMSE 0.893* 0.908* 0.852* 0.973 0.974 0.858* 1.046 1.025 0.857*

AIC 0.945 0.972* 0.980 0.955 0.951* 0.976* 0.947 0.969* 0.975*

Mean group 0.895 0.901 0.822 1.289 1.042 0.719 1.491* 1.595* 1.239
ES Individual 0.288 0.198 0.147 0.233 0.121 0.106 0.253 0.114 0.102

minMSE 0.919 0.909* 0.856* 0.955 0.951 0.927 0.957 0.919 0.889
AIC 0.958 0.961* 0.974* 0.860 0.940 0.940* 0.813* 0.934 0.933*

Mean group 1.237* 1.427* 1.225 1.011 1.561* 1.352 0.946 1.886* 1.248
UK Individual 0.281 0.116 0.044 0.254 0.142 0.047 0.244 0.142 0.047

minMSE 0.928 0.988 0.953 0.840 0.984 0.868 0.743 1.034 0.913
AIC 0.871* 0.933 0.953 0.876 0.958 0.941 0.726* 0.917* 0.898*

Mean group 1.714 2.444* 3.688* 2.530* 2.445* 3.121* 4.330* 2.214* 2.650*

Table OA.4: Nowcasting MSE. For individual estimator : absolute value. For averaging estimators :
MSE relative to individual estimator. For different estimation window sizes (44, 60, 76); selected
weekly horizons relative to quarter end (−6, 0,+4 weeks). * – forecasting performance difference
significant at 10% in Diebold-Mariano test (Diebold and Mariano, 1995)

Our key finding is that using the minimum MSE estimator generally generally leads to

improved nowcasting performance, mirroring the results of section 5. This is clear from

table OA.4, as the vast majority of entries corresponding to those weights display relative

MSE smaller than one, with improvements reaching up to 20%. The degree of improvement

varies with the country in question. However, the average gain in performance is on the

scale of about 9%.

5Weighing by GDP as in Marcellino et al. (2003) emulates forecasting the Eurozone GDP using individual
forecasts.
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Figure OA.34: Distribution of relative MSEs across countries. Split by different averaging
strategies and estimation window size. Same weekly positions as reported in table OA.4

Unlike in section 5, AIC weights offer fairly robust improvements for nowcasting. The

MSE is on average 5% lower for AIC weights relative to the individual-specific estimator.

We also observe that minimum MSE weights and AIC weights do not uniformly dominate

each other.

Figure OA.34 provides a box plot for relative MSEs for nowcasting GDP for all the

countries in the panel for the vintages considered in table OA.4. The figure illustrates that

the favorable performance is robust across countries and not limited to the five biggest

economies reported in table OA.4. Both minimum MSE and AIC weights generally lead

to an improvement in performance, as both rarely have relative MSE above one. There

is some evidence that the minimum MSE weights have a greater upside, at the price of

potentially some more variability in the results, while AIC leads to smaller, but more tightly

concentrated improvements. Further, we find that averaging is more attractive for the

smallest sample size of 𝑇 = 44, with relative MSE generally approaching one as 𝑇 increases.

This can be clearly seen in figure OA.34, as the improvement range for AIC and minimum

MSE weights becomes more concentrated and to closer to one. As previously remarked, as

𝑇 increases, the minimum MSE estimator converges to the individual estimator; a similar

point applies to AIC weights if the log likelihood is not divided by samples size and allowed
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to diverge as sample size grows.

OA.6.3 Description of the Variables Used

In this section we describe the monthly predictors used for forecasting. The descriptions

are contained in table OA.5. Table OA.5 is split in two parts. The first part broadly

corresponds to ”hard” economic activity data obtained from Eurostat. The second part lists

the business and economic survey data available from the Directorate-General for Economic

and Financial Affairs of the European Commission.

Description of the first part:

∙ Columns Name, Description, Group list the Eurostat name, description, and economic

content of a given variable.

∙ Code provides the Eurostat code.

∙ Delay weeks: how many weeks after the end of the relevant month is the variable

released. We simplify the calendar to two releases in a month: at the beginning of a

month and in the middle. The full calendar is available from the Eurostat.

∙ Tr.: code of the transformation applied to the data to transform it to an 𝐼(0) variable.

Transformation codes are as follows:

0 None, data used in levels

1 First difference

2 Log difference

3 Translation upwards to ensure that variable is strictly positive + log difference

4 Quarterly difference (quarterly GDP)

For survey variables we use their DG ECFIN survey codes. We omit the descriptions of

each individual question; see the official description available from DG ECFIN.6

6https://ec.europa.eu/info/business-economy-euro/indicators-statistics/

economic-databases/business-and-consumer-surveys_en
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Table OA.5: List of variables. Note: not all variables are available for all

countries at a given time. This only impacts the precision in estimating country-

specific factors.

n Name Tr. Units Delay

weeks

Group Code Description

1 PROD-B 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [B] Mining and quarrying

2 PROD-B-D 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [B-D] Mining and quarry-

ing; manufacturing; elec-

tricity, gas, steam and air

conditioning supply

3 PROD-B-D F 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [B-D F] Mining and quar-

rying; manufacturing; elec-

tricity, gas, steam and air

conditioning supply; con-

struction

4 PROD-B C 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [B C] Mining and quarry-

ing; manufacturing

5 PROD-C 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [C] Manufacturing

6 PROD-C HTC 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [C HTC] High-technology

manufacturing

7 PROD-C LTC 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [C LTC] Low-technology

manufacturing

8 PROD-D 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [D] Electricity, gas, steam

and air conditioning supply
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Table OA.5 continued from previous page

n Name Tr. Units Delay

weeks

Group Code Description

9 PROD-MIG CAG 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [MIG CAG] MIG - capital

goods

10 PROD-MIG COG 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [MIG COG] MIG - con-

sumer goods

11 PROD-MIG DCOG 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [MIG DCOG] MIG -

durable consumer goods

12 PROD-MIG ING 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [MIG ING] MIG - interme-

diate goods

13 PROD-MIG NDCOG 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [MIG NDCOG] MIG - non-

durable consumer goods

14 PROD-MIG NRG X E 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [MIG NRG X E] MIG - en-

ergy (except section E)

15 PROD-MIG ING CAG 1 [I15] Index, 2015=100 6 Industrial Production STS INPR M [MIG ING CAG] MIG -

intermediate and capital

goods

16 PSQM-F CC1 2 [PSQM] Building permits -

m2 of useful floor area

6 Building Permits STS COBP M [F CC1] Buildings

17 PSQM-F CC11 2 [PSQM] Building permits -

m2 of useful floor area

6 Building Permits STS COBP M [F CC11] Residential build-

ings

18 TOVT-B 1 [I15] Index, 2015=100 6 Turnover in Industry STS INTV M [B] Mining and quarrying

19 TOVT-C 1 [I15] Index, 2015=100 6 Turnover in Industry STS INTV M [C] Manufacturing

20 TOVT-MIG CAG 1 [I15] Index, 2015=100 6 Turnover in Industry STS INTV M [MIG CAG] MIG - capital

goods
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Table OA.5 continued from previous page

n Name Tr. Units Delay

weeks

Group Code Description

21 TOVT-MIG COG 1 [I15] Index, 2015=100 6 Turnover in Industry STS INTV M [MIG COG] MIG - con-

sumer goods

22 TOVT-MIG ING 1 [I15] Index, 2015=100 6 Turnover in Industry STS INTV M [MIG ING] MIG - interme-

diate goods

23 TOVV-G47 1 [I15] Index, 2015=100 6 Wholesale and retail,

turnover

STS TRTU M [G47] Retail trade, except

of motor vehicles and mo-

torcycles

24 TOVT-G-N STS 0 [PCH PRE] Percentage

change on previous period

6 Turnover in services STS SETU M [G-N STS] Services re-

quired by STS regulation

25 TOVT-H 0 [PCH PRE] Percentage

change on previous period

6 Turnover in services STS SETU M [H] Transportation and

storage

26 TOVT-H51 I55 N79 0 [PCH PRE] Percentage

change on previous period

6 Turnover in services STS SETU M [H51 I55 N79] Air trans-

port; accommodation;

travel agency, tour opera-

tor and other reservation

service and related activi-

ties

27 TOVT-I 0 [PCH PRE] Percentage

change on previous period

6 Turnover in services STS SETU M [I] Accommodation and

food service activities

28 TOVT-J 0 [PCH PRE] Percentage

change on previous period

6 Turnover in services STS SETU M [J] Information and com-

munication
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Table OA.5 continued from previous page

n Name Tr. Units Delay

weeks

Group Code Description

29 TOVT-M69 M702 0 [PCH PRE] Percentage

change on previous period

6 Turnover in services STS SETU M [M69 M702] Legal, ac-

counting and management

consultancy activitie

30 TOVT-M STS 0 [PCH PRE] Percentage

change on previous period

6 Turnover in services STS SETU M [M STS] Professional, sci-

entific and technical activ-

ities required by STS regu-

lation

31 TOVT-N STS 0 [PCH PRE] Percentage

change on previous period

6 Turnover in services STS SETU M [N STS] Administrative

and support service ac-

tivities required by STS

regulation

32 PCH SM-I551-I553 0 [PCH SM] Percentage

change compared to same

period in previous year

8 Nights spent at tourist

accommodation

TOUR OCC NIM [I551-I553] Hotels; holi-

day and other short-stay

accommodation; camping

grounds, recreational vehi-

cle parks and trailer parks

33 PAS-PAS BRD 2 [PAS] Passenger 8 Air transport of passen-

gers

TTR00016 [PAS BRD] Passengers on

board

34 PAS-PAS BRD ARR 2 [PAS] Passenger 8 Air transport of passen-

gers

TTR00016 [PAS BRD ARR] Passen-

gers on board (arrivals)

35 PAS-PAS BRD DEP 2 [PAS] Passenger 8 Air transport of passen-

gers

TTR00016 [PAS BRD DEP] Passen-

gers on board (departures)
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n Name Tr. Units Delay

weeks

Group Code Description

36 PAS-PAS CRD 2 [PAS] Passenger 8 Air transport of passen-

gers

TTR00016 [PAS CRD] Passengers car-

ried

37 PAS-PAS CRD ARR 2 [PAS] Passenger 8 Air transport of passen-

gers

TTR00016 [PAS CRD ARR] Passen-

gers carried (arrival)

38 PAS-PAS CRD DEP 2 [PAS] Passenger 8 Air transport of passen-

gers

TTR00016 [PAS CRD DEP] Passen-

gers carried (departures)

39 FA 3 [BAL] Balance, Million

Euro

6 Balance of Payments BOP C6 M [FA] Financial account

40 CA 3 [BAL] Balance, Million

Euro

6 Balance of Payments BOP C6 M [CA] Current account

41 CKA 3 [BAL] Balance, Million

Euro

6 Balance of Payments BOP C6 M [CKA] Current plus capi-

tal account (balance = Net

lending (+) / net borrow-

ing (-))

42 GS 3 [BAL] Balance, Million

Euro

6 Balance of Payments BOP C6 M [GS] Goods and services

43 KA 3 [BAL] Balance, Million

Euro

6 Balance of Payments BOP C6 M [KA] Capital account

44 THS T-B 195500 3 [THS T] Thousand tonnes 6 Crude oil NRG JODI [B 195500] Demand

45 TJ GCV-B 190400 3 [TJ GCV] Terajoule (gross

calorific value - GCV)

6 Natural gas supply NRG IND 343M [B 190400] Stock Changes

46 TJ GCV-B 190900 2 [TJ GCV] Terajoule (gross

calorific value - GCV)

6 Natural gas supply NRG IND 343M [B 190900] Supply
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n Name Tr. Units Delay

weeks

Group Code Description

47 GWH 2 [GWh] GWh 6 Electricity available NRG CB EIM Electricity available to in-

ternal market

48 GWH-B 190600 3 [GWh] GWh 6 Electricity supply NRG IND 342M [B 190600] Net Imports

49 GWH-B 190900 2 [GWh] GWh 6 Electricity supply NRG IND 342M [B 190900] Supply

50 GWH-B 197000 2 [GWh] GWh 6 Electricity supply NRG IND 342M [B 197000] Total gross pro-

duction

51 IRT DTD 0 % rate 0 Money market interest

rates

IRT ST M [IRT DTD] Day-to-day

rate

52 IRT M1 0 % rate 0 Money market interest

rates

IRT ST M [IRT M12] 12-month rate

53 IRT M12 0 % rate 0 Money market interest

rates

IRT ST M [IRT M1] 1-month rate

54 IRT M3 0 % rate 0 Money market interest

rates

IRT ST M [IRT M3] 3-month rate

55 IRT M6 0 % rate 0 Money market interest

rates

IRT ST M [IRT M6] 6-month rate

56 NEER IC42 1 [I10] Index, 2010=100 4 Effective exchange rate ERT EFF IC M [NEER IC42] Nominal ef-

fective exchange rate - 42

trading partners (indus-

trial countries)

57 MCBY 0 % rate 4 EMU convergence crite-

rion

IRT LT MCBY M [MCBY] EMU convergence

criterion bond yields
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n Name Tr. Units Delay

weeks

Group Code Description

58 RCH M-CP00 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [CP00] All-items HICP

59 RCH M-CP01 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [CP01] Food and non-

alcoholic beverages

60 RCH M-CP03 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [CP03] Clothing and

footwear

61 RCH M-CP04 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [CP04] Housing, water,

electricity, gas and other

fuels

62 RCH M-CP045 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [CP045] Electricity, gas

and other fuels

63 RCH M-CP05 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [CP05] Furnishings, house-

hold equipment and

routine household mainte-

nance

64 RCH M-CP06 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [CP06] Health

65 RCH M-CP07 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [CP07] Transport

66 RCH M-CP08 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [CP08] Communications

67 RCH M-CP10 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [CP10] Education
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n Name Tr. Units Delay

weeks

Group Code Description

68 RCH M-FOOD 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [FOOD] Food including al-

cohol and tobacco

69 RCH M-FUEL 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [FUEL] Liquid fuels and fu-

els and lubricants for per-

sonal transport equipment

70 RCH M-GD 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [GD] Goods (overall index

excluding services)

71 RCH M-IGD 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [IGD] Industrial goods

72 RCH M-NRG 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [NRG] Energy

73 RCH M-SERV 0 % monthly change 2 Harmonised Index of

Consumer Prices

PRC HICP MMOR [SERV] Services (overall in-

dex excluding goods)

74 PRON-B 1 [I15] Index, 2015=100 2 Producer prices in indus-

try, total

STS INPP M [B] Mining and quarrying

75 PRON-B-E36 1 [I15] Index, 2015=100 2 Producer prices in indus-

try, total

STS INPP M [B-E36] Industry (except

construction, sewerage,

waste management and

remediation activities)

76 PRON-C 1 [I15] Index, 2015=100 2 Producer prices in indus-

try, total

STS INPP M [C] Manufacturing

77 PRON-D 1 [I15] Index, 2015=100 2 Producer prices in indus-

try, total

STS INPP M [D] Electricity, gas, steam

and air conditioning supply
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n Name Tr. Units Delay

weeks

Group Code Description

78 PRON-MIG CAG 1 [I15] Index, 2015=100 2 Producer prices in indus-

try, total

STS INPP M [MIG CAG] MIG - capital

goods

79 PRON-MIG COG 1 [I15] Index, 2015=100 2 Producer prices in indus-

try, total

STS INPP M [MIG COG] MIG - con-

sumer goods

80 PRON-MIG DCOG 1 [I15] Index, 2015=100 2 Producer prices in indus-

try, total

STS INPP M [MIG DCOG] MIG -

durable consumer goods

81 PRON-MIG NDCOG 1 [I15] Index, 2015=100 2 Producer prices in indus-

try, total

STS INPP M [MIG NDCOG] MIG - non-

durable consumer goods

82 TOTAL-PC ACT 1 [PC ACT] Percentage of

population in the labour

force

4 Unemployment UNE RT M [TOTAL] Total

83 Y25-74-PC ACT 1 [PC ACT] Percentage of

population in the labour

force

4 Unemployment UNE RT M [Y LT25] Less than 25

years

84 Y LT25-PC ACT 1 [PC ACT] Percentage of

population in the labour

force

4 Unemployment UNE RT M [Y25-74] From 25 to 74

years

85 BUIL-TOT-COF-BS 1 0 Survey

86 BUIL-TOT-1-BS 1 0 Survey

87 BUIL-TOT-2-F1S 1 0 Survey

88 BUIL-TOT-2-F2S 1 0 Survey

89 BUIL-TOT-2-F3S 1 0 Survey

90 BUIL-TOT-2-F4S 1 0 Survey
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n Name Tr. Units Delay

weeks

Group Code Description

91 BUIL-TOT-2-F5S 1 0 Survey

92 BUIL-TOT-2-F6S 1 0 Survey

93 BUIL-TOT-2-F7S 1 0 Survey

94 BUIL-TOT-3-BS 1 0 Survey

95 BUIL-TOT-4-BS 1 0 Survey

96 BUIL-TOT-5-BS 1 0 Survey

97 CONS-TOT-COF-BS 1 0 Survey

98 CONS-TOT-1-BS 1 0 Survey

99 CONS-TOT-2-BS 1 0 Survey

100 CONS-TOT-3-BS 1 0 Survey

101 CONS-TOT-4-BS 1 0 Survey

102 CONS-TOT-5-BS 1 0 Survey

103 CONS-TOT-6-BS 1 0 Survey

104 CONS-TOT-7-BS 1 0 Survey

105 CONS-TOT-8-BS 1 0 Survey

106 CONS-TOT-9-BS 1 0 Survey

107 CONS-TOT-10-BS 1 0 Survey

108 CONS-TOT-11-BS 1 0 Survey

109 CONS-TOT-12-BS 1 0 Survey

110 INDU-TOT-COF-BS 1 0 Survey

111 INDU-TOT-1-BS 1 0 Survey

112 INDU-TOT-2-BS 1 0 Survey

113 INDU-TOT-3-BS 1 0 Survey
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n Name Tr. Units Delay

weeks

Group Code Description

114 INDU-TOT-4-BS 1 0 Survey

115 INDU-TOT-5-BS 1 0 Survey

116 INDU-TOT-6-BS 1 0 Survey

117 INDU-TOT-7-BS 1 0 Survey

118 INDU 1 0 Survey

119 SERV 1 0 Survey

120 CONS 1 0 Survey

121 RETA 1 0 Survey

122 BUIL 1 0 Survey

123 ESI 1 0 Survey

124 EEI 1 0 Survey

125 RETA-TOT-COF-BS 1 0 Survey

126 RETA-TOT-1-BS 1 0 Survey

127 RETA-TOT-2-BS 1 0 Survey

128 RETA-TOT-3-BS 1 0 Survey

129 RETA-TOT-4-BS 1 0 Survey

130 RETA-TOT-5-BS 1 0 Survey

131 RETA-TOT-6-BS 1 0 Survey

132 SERV-TOT-COF-BS 1 0 Survey

133 SERV-TOT-1-BS 1 0 Survey

134 SERV-TOT-2-BS 1 0 Survey

135 SERV-TOT-3-BS 1 0 Survey

136 SERV-TOT-4-BS 1 0 Survey
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weeks

Group Code Description

137 SERV-TOT-5-BS 1 0 Survey

138 SERV-TOT-6-BS 1 0 Survey

139 EMPL-B 1 0 Survey

140 EMPL-B-E36 1 0 Survey

141 EMPL-C 1 0 Survey

142 EMPL-D 1 0 Survey

143 EMPL-MIG CAG 1 0 Survey

144 EMPL-MIG COG 1 0 Survey

145 EMPL-MIG DCOG 1 0 Survey

146 EMPL-MIG NDCOG 1 0 Survey

147 HOWK-B 1 0 Survey

148 HOWK-B-E36 1 0 Survey

149 HOWK-C 1 0 Survey

150 HOWK-D 1 0 Survey

151 HOWK-MIG CAG 1 0 Survey

152 HOWK-MIG COG 1 0 Survey

153 HOWK-MIG DCOG 1 0 Survey

154 HOWK-MIG NDCOG 1 0 Survey

155 WAGE-B 1 0 Survey

156 WAGE-B-E36 1 0 Survey

157 WAGE-C 1 0 Survey

158 WAGE-D 1 0 Survey

159 WAGE-MIG CAG 1 0 Survey
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Group Code Description

160 WAGE-MIG COG 1 0 Survey

161 WAGE-MIG DCOG 1 0 Survey

162 WAGE-MIG NDCOG 1 0 Survey

163 CLV I15 4 [I15] 6 Quarterly GDP CLV I15 Quarterly GDP
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