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Problem: Estimation of Individual Parameter

Object of interest: parameter 𝜇 in a potentially nonlinear and dynamic model
𝜇 could be anything:

Structural parameters: individual marginal effects, elasticities, ...
Forecasts: realized volatility, GDP, ...

We have a panel of time series, but is is heterogeneous — every unit has its own 𝜇i

Example: cross-country/sectoral/etc heterogeneity

Goal

Estimate 𝜇 of a given unit with minimal MSE

Interest in a unit-specific parameter, not a population-wide one!
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Example: Prediction in Linear Model

Linear model with unit-specific heterogeneity:

yit = 𝜃′
ix it + uit , E[uit |x it ] = 0, i = 1, . . . , t = 1, . . . ,T .

Goal is MSE-optimal prediction of y for unit 1
⇒ the parameter of interest is

𝜇(𝜃1) = E[y1T+1|x iT+1] = 𝜃1x1T+1.

Parameter specific to unit 1
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Formal Setting: Individual Parameters

Unit differ in some individual parameters 𝜃i that satisfy

𝜃i = argmax
𝜃∈Θ

E

(︃
1
T

T∑︁
t=1

m(𝜃, z it)

)︃

M-estimation problem with
m Some known smooth function, may be nonlinear
zit Observed data, may include lags of variables

Object of interest: 𝜇(𝜃1), where 𝜇 is some known smooth function

This presentation: 𝜇(𝜃1) ≡ 𝜃1 and 𝜃1 scalar for simplicity; general case – in the paper
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How to estimate 𝜃1 with minimal MSE?

Is there is a nontrivial bias-variance trade-off between individual-specific and panel-wide
information:

Yes: moderate-T case — the setting of this paper
Heuristic criterion: t-statistic on unit-specific estimates between 1 and 5
⇒ unit averaging approach we propose

No: Either bias or variance is large relative to the other one (large-T and small-T
settings)
⇒ (large-T ): just use the individual estimator of the target unit
⇒ (small-T ): pool data in estimation and/or Bayesian approaches (some results for
linear models given by Maddala et al. (1997); Wang et al. (2019); Liu et al. (2021))
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Our Solution: Unit Averaging

Our estimator for parameter of interest 𝜃 for the fixed unit of interest: a compromise unit
averaging estimator:

𝜃(w) =
N∑︁
i=1

wi𝜃i , wi ≥ 0,
N∑︁
i=1

wi = 1.

where 𝜃i is the individual estimator of unit i :

𝜃i = argmin
𝜃i∈Θ

T−1
T∑︁
t=1

m(𝜃i , z it)

Fairly broad class of estimators: nests individual-specific, mean group, Stein-like,
information criteria-weighted, etc.

C. Brownlees, V. Morozov

Unit Averaging for Heterogeneous Panels



6/23

Motivation for Unit Averaging

Averaging estimator:

𝜃(w) =
N∑︁
i=1

wi𝜃i .

Why should unit averaging lower the MSE?
Every individual 𝜃i can be written as

𝜃i = E[𝜃i ] + 𝜂i , E[𝜂i ] = 0,

If E[𝜃i ] = 𝜃0 for some common 𝜃0, every unit i has info about the component
component 𝜃0
⇒ Using info from other units lowers uncertainty about 𝜃0
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Approach for Choosing Weights

Averaging estimator:

𝜃(w) =
N∑︁
i=1

wi𝜃i .

How to pick weights w to minimize MSE? Target the unit of interest.
We derive leading terms of the exact moderate-T MSE of 𝜃(w) and provide a
plug-in estimator
Feasible weights are obtained by minimizing estimated MSE.
We propose two schemes: one uses prior information about unit similarity; the other
one agnostic
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Overview of Results: Theory

Contribution

We give a tractable approach for unit-specific parameters in potentially nonlinear and
dynamic models and show that it has good properties

We discuss theoretical properties in two cases:
Moderate-T (limited information regime)
Large-T (growing information regime)

Results in moderate-T :
Formal derivation of leading terms of the MSE (and some other risk functions)
Asymptotic distribution of averaging estimator and feasible weights.
Inference on the target parameter

Results in large-T case: estimator is safe to use:
The estimator does not use units with 𝜃i ̸= target value
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Overview of Results: Applications

Application: does unit averaging work in simulations and in practice? Yes!
We do two applications:

Forecasting regional unemployment rates for a panel of German labor market
districts
Nowcasting GDP for a panel of European countries (Online Appendix)

In both cases our methodology performs favorably:
Our MSE-optimal weights improve on individual estimator (38% percent average
improvement for unemployment; 9% average improvement for nowcasting)
Gains in performance stronger for shorter panels
Other weighting schemes including equal weights (mean group) – generally worse
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Relation to the Literature

Builds on two strands of literature:
1 Estimation of unit-specific parameters (Maddala et al., 1997, 2001; Baltagi et al., 2008;

Issler and Lima, 2009; Baltagi, 2013; Zhang et al., 2014; Wang et al., 2019; Liu et al., 2020)
⇒ We focus on a moderate-T setting (not small-T or large-T )
⇒ We consider not just linear models, but possible nonlinear ones

2 Unit averaging has similarities to model averaging Hjort and Claeskens (2003);
Claeskens and Hjort (2008); Zhang et al. (2014); Liu (2015); Yin et al. (2021)
⇒ Unit averaging may be viewed as model averaging where every unit is a model,
and every model is estimated on a different sample
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Probabilistic Framework

Unit parameters differ according to mean-zero idiosyncratic random variables 𝜂i :
𝜂i can be cross-sectionally heterogeneous
Must have supi E[𝜂12

i ] < ∞

Interest in realized value for unit 1 ⇒ work conditionally on {𝜂1, 𝜂2, . . .}

Important: we show that all our results hold for almost all realization of (𝜂1, 𝜂2, ...) (with
𝜂-probability 1)
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Approximating Moderate-T: Limited Information Asymptotics

Moderate-T setting ⇒ amount of information in each time series is limited

We reproduce this feature using a local heterogeneity device:

𝜃i = E[𝜃i ] +
𝜂i√
T
.

Allows us to do limited information local asymptotics:
Approximate exact bias and variance of 𝜃i using asymptotic techniques
But amount of information in each time series is bounded and finite even as T → ∞
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Local Asymptotic Properties of Individual Estimators

Basic building block of averaging – things to be averaged.

Lemma

As T → ∞, the individual estimators satisfy

√
T
(︁
𝜃i − 𝜃1

)︁
⇒ N(𝜂i − 𝜂1,Vi )

Important: T → ∞ is taken in local approximation sense.
Amount of information is each time series is finite and not growing

Limit mean and variance — local approximation to exact moderate-T bias and variance
of 𝜃i for estimating 𝜃1
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Leading Terms of MSE of Unit Averaging Estimator

Theorem

Let units be independent and let
1 wN be a given N-vector of weights (non-negative and sums to one)
2 supi |wiN − wi | = o(N−1/2) for some w ∈ R∞ with wi ≥ 0 and

∑︀
wi ≤ 1

Then as N,T → ∞

T ×MSE
(︁
𝜃(wN)

)︁
→

(︃ ∞∑︁
i=1

wi𝜂i − 𝜂1

)︃2

+
∞∑︁
i=1

w2
i Vi

Right hand side – local approximation, leading terms of the bias and the variance.
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Towards Feasible Weights

Local approximation to the MSE:

LA-MSE (w) =

(︃ ∞∑︁
i=1

wi𝜂i − 𝜂1

)︃2

+
∞∑︁
i=1

w2
i V i

To obtain feasible weights:
Select class of weights to minimize over
Replace 𝜂i and Vi by estimators
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Two Averaging Approaches

We discuss two ways to specify weights, depending on availability of prior information on
which units have 𝜃i similar to 𝜃1

1 Fixed-N — agnostic approach that imposes no structure on weights
2 Large-N (details in the paper) — useful with prior information

Splits units into two sets — unrestricted and restricted. Unrestricted units: any
weight. Restricted units: only the total mass of the restricted set

Name of approaches due to underlying statistical frameworks
Large-N only differs from fixed-N when restricted set at least somewhat large
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Feasible Optimal Weights in the Fixed-N Case

Fixed-N case — given fixed collection of N̄ units using N̄ vector of weights w N̄ . Then:
1 Can write LA-MSE as

LA-MSEN̄(w
N̄) = w N̄′

ΨN̄w N̄ ,

where ΨN̄ is an N̄ × N̄ matrix with elements

[ΨN̄ ]i j = (𝜂i − 𝜂1) (𝜂j − 𝜂1)
′ + I{i = j}Vi

2 Replace unknowns with “best possible” estimators in the moderate-T case:

[Ψ̂N̄ ]i j = T (𝜃i − 𝜃1)(𝜃j − 𝜃1)
′ + I{i = j}V̂i .

3 Feasible optimal fixed-N weights solve quadratic problem

ŵ N̄ = argmin∑︀
w=1,w≥0

w N̄′
Ψ̂N̄w N̄ .
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Moderate-T (Limited Information) Properties of Fixed-N Weights

Feasible weights solve the correct ideal MSE problem plus bias and zero-mean noise:

[Ψ̂N̄ ]i j = [ΨN̄ ]i j + V1 + Ii=jVj + ei j + op(1),

Here
E[eij ] = 0
Extra variance terms V1 and Vj – price for having a positive definite finite sample
problem

Properties of averaging estimator:
1 Approximately distributed as a randomly weighted sum of Gaussian random variables
2 Show how to construct confidence intervals for the parameter of interest based on

the unit averaging estimator
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Large-T (Growing Information) Properties of Unit Averaging

It is safe to use the feasible optimal weights even if amount of information in each time
series is large. Theoretically: fixed parameter growing information asymptotics with

𝜃i = E[𝜃i ] + 𝜂i .

Recall
[Ψ̂N̄ ]i j = T (𝜃i − 𝜃1)(𝜃j − 𝜃1)

′ + I{i = j}V̂i .

In the large-T case:
1 If 𝜃i ̸= 𝜃1, the bias estimator

√
T (𝜃i − 𝜃1) will diverge

2 Variance terms remain bounded.
⇒ Procedure will place asymptotically zero weight on all units with 𝜃i ̸= 𝜃1. If 𝜃i are
continuously distributed, unit averaging estimator will converge to 𝜃1
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Application: Forecasting Unemployment Rates for German Regions

We apply unit averaging to forecast regional unemployment rates for N = 150 German
labor market districts:

Regions strongly heterogeneous (de Graaff et al., 2018)
But combining data might improve forecasting (Schanne et al., 2010)

Data: monthly data 2007-2024 from German Federal Labor Market Agency

Unemployment rate in region i at period t yit modeled as a function of its past, past
unemployment rate yRDit in broader region (RD) and Germany (yDE

t ):

yit = 𝜃i0 + 𝜃i1yit−1 + 𝜃i2y
RD
it−1 + 𝜃i3y

DE
t−1 + uit , t = 1, . . . ,T

Parameter of interest: conditional mean of yit given observables

We use rolling windows (one-step-ahead out-of-sample) forecasting to estimate the MSE
for our approaches + some competing alternatives (individual estimator, mean group,
AIC/BIC weights). Estimate MSE for T = 40, 60, 80

C. Brownlees, V. Morozov

Unit Averaging for Heterogeneous Panels



Fixed-N Large-N
(Stein)

Large-N
(by top units)

Mean Group AIC

Averaging method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
el

at
iv

e 
M

SE

MSE Relative to Individual Estimator
T

40
60
80

Figure: distribution of relative MSEs across AABs. Split by different averaging strategies and
estimation window size. Whiskers – 10th and 90th percentiles; box boundaries – 25th and 75th
percentiles; box crossbar – median



Figure: Geographic distribution of MSE to T = 40. Thin lines denote borders of AABs. Left and
right panels: MSE of minimum MSE fixed-N and individual estimators respectively. Middle panel:
ratio of MSE of fixed-N estimator to individual estimator.



23/23

Conclusions

Even when estimating a unit-specific parameter, there still is value in panel data
We propose a unit averaging approach
Fits potentially nonlinear and dynamic models
Moderate-T : approximate the MSE and provide a feasible optimal weighting scheme
+ characterize the properties of the procedure
Large-T : unit averaging is safe to use
Empirical application to unemployment forecasting: gains from using our feasible
optimal weights
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